Wong et al., 2012 - Google Patents
Mass classification in digitized mammograms using texture features and artificial neural networkWong et al., 2012
View PDF- Document ID
- 7461511938714494277
- Author
- Wong M
- He X
- Nguyen H
- Yeh W
- Publication year
- Publication venue
- International Conference on Neural Information Processing
External Links
Snippet
A technique is proposed to classify regions of interests (ROIs) of digitized mammograms into mass and non-mass regions using texture features and artificial neural network (ANN). Fifty ROIs were extracted from the MIAS MiniMammographic Database, with 25 ROIs containing …
- 230000001537 neural 0 title abstract description 6
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
- G06K9/4609—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections by matching or filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/52—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06K9/527—Scale-space domain transformation, e.g. with wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00127—Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K2209/05—Recognition of patterns in medical or anatomical images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Oliveira Martins et al. | Detection of masses in digital mammograms using K-means and support vector machine | |
US6760468B1 (en) | Method and system for the detection of lung nodule in radiological images using digital image processing and artificial neural network | |
US20060018524A1 (en) | Computerized scheme for distinction between benign and malignant nodules in thoracic low-dose CT | |
Ashwin et al. | Efficient and reliable lung nodule detection using a neural network based computer aided diagnosis system | |
Fathima et al. | Automatic detection of tumor subtype in mammograms based On GLCM and DWT features using SVM | |
Nugroho et al. | Texture analysis for classification of thyroid ultrasound images | |
Wong et al. | Mass classification in digitized mammograms using texture features and artificial neural network | |
Jaleel et al. | Textural features based computer aided diagnostic system for mammogram mass classification | |
Bose et al. | Detection of microcalcification in mammograms using soft computing techniques | |
Karale et al. | Reduction of false positives in the screening CAD tool for microcalcification detection | |
Loizidou et al. | Identification and classification of benign and malignant masses based on subtraction of temporally sequential digital mammograms | |
Garma et al. | Classification of breast tissue as normal or abnormal based on texture analysis of digital mammogram | |
Dheeba et al. | A CAD system for breast cancer diagnosis using modified genetic algorithm optimized artificial neural network | |
Anter et al. | Computer aided diagnosis system for mammogram abnormality | |
ElSoud et al. | Automatic mammogram segmentation and computer aided diagnoses for breast tissue density according to BIRADS dictionary | |
Arymurthy | Association technique based on classification for classifying microcalcification and mass in mammogram | |
Jaleel et al. | Mammogram mass classification based on discrete wavelet transform textural features | |
Eqbal et al. | Medical image feature extraction using wavelet transform | |
Kailasam et al. | Roc curve analysis of different hybrid feature descriptors using multi classifiers | |
Hasanabadi et al. | Detection of pulmonary nodules in CT images using template matching and neural classifier | |
Ammar et al. | Using Distance Measure Based Classification in Automatic Extraction of Lungs Cancer Nodules for Computer Aided Diagnosis | |
Valliappan et al. | A theoretical methodology and prototype implementation for detection segmentation classification of digital mammogram tumor by machine learning and problem solving approach | |
Simgamsetti et al. | AlexNet for Lung Cancer Detection: Leveraging Deep Learning for Diagnosis | |
Kumar et al. | Diagnosis of liver tumour from CT images using contourlet transform | |
Prashanthi et al. | Lung Nodule Detection For CT-Guided Biopsy Images Using Deep Learning |