[go: up one dir, main page]

Loughrey et al., 2004 - Google Patents

Overfitting in wrapper-based feature subset selection: The harder you try the worse it gets

Loughrey et al., 2004

View PDF
Document ID
7210085529700024356
Author
Loughrey J
Cunningham P
Publication year
Publication venue
International conference on innovative techniques and applications of artificial intelligence

External Links

Snippet

In Wrapper based feature selection, the more states that are visited during the search phase of the algorithm the greater the likelihood of finding a feature subset that has a high internal accuracy while generalizing poorly. When this occurs, we say that the algorithm has …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0472Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme

Similar Documents

Publication Publication Date Title
Loughrey et al. Overfitting in wrapper-based feature subset selection: The harder you try the worse it gets
Zhuang et al. TILDE: Term independent likelihood moDEl for passage re-ranking
Raihan et al. Sparse weight activation training
Tsamardinos et al. Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation
Papadopoulos Inductive conformal prediction: Theory and application to neural networks
Bay Nearest neighbor classification from multiple feature subsets
Lawrence et al. Function approximation with neural networks and local methods: Bias, variance and smoothness
WO1997044741A1 (en) System and method for combining multiple learning agents to produce a prediction method
EP3929823A1 (en) Program, learning method, and information processing apparatus
Antonello et al. Selecting informative contexts improves language model finetuning
Shi et al. Learning where to sample in structured prediction
Dittadi et al. Planning from pixels in atari with learned symbolic representations
Lenz et al. No imputation without representation
US7853541B1 (en) Method and apparatus for simmered greedy optimization
JP3868344B2 (en) Text multiple topics extraction method and apparatus, text multiple topics extraction program, and recording medium recording the program
Puuronen et al. Advanced local feature selection in medical diagnostics
Danubianu et al. Data dimensionality reduction for data mining: A combined filter-wrapper framework
Apte et al. Ramp: Rules abstraction for modeling and prediction
Pellatt et al. CausalBatch: solving complexity/performance tradeoffs for deep convolutional and LSTM networks for wearable activity recognition
El Hajjami et al. Machine learning facing behavioral noise problem in an imbalanced data using one side behavioral noise reduction: application to a fraud detection
Peng et al. Adaptive nonmonotone conjugate gradient training algorithm for recurrent neural networks
Paja Generational feature elimination to find all relevant feature subset
Babu et al. Recognition of Chronic Kidney Disease Using Machine Learning
Wetmore et al. Speeding up the self-organizing feature map using dynamic subset selection
Danubianu et al. Unsupervised information-based feature selection for speech therapy optimization by data mining techniques