Karaja et al., 2023 - Google Patents
Efficient bi-level multi objective approach for budget-constrained dynamic Bag-of-Tasks scheduling problem in heterogeneous multi-cloud environmentKaraja et al., 2023
- Document ID
- 5324895931450932862
- Author
- Karaja M
- Chaabani A
- Azzouz A
- Ben Said L
- Publication year
- Publication venue
- Applied Intelligence
External Links
Snippet
Bag-of-Tasks is a well-known model that processes big-data applications supporting embarrassingly parallel jobs with independent tasks. Scheduling Bag-of-Tasks in a dynamic multi-cloud environment is an NP-hard problem that has attracted a lot of attention in the last …
- 238000013459 approach 0 title description 19
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
- G06Q10/0631—Resource planning, allocation or scheduling for a business operation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tong et al. | Spatial crowdsourcing: a survey | |
Mohammadzadeh et al. | Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective optimization algorithm | |
Chen et al. | Deploying data-intensive applications with multiple services components on edge | |
Kaur et al. | Deep‐Q learning‐based heterogeneous earliest finish time scheduling algorithm for scientific workflows in cloud | |
Ranjbar et al. | A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling | |
Asghari et al. | Online scheduling of dependent tasks of cloud’s workflows to enhance resource utilization and reduce the makespan using multiple reinforcement learning-based agents | |
Zuo et al. | A multi-objective hybrid cloud resource scheduling method based on deadline and cost constraints | |
Karaja et al. | Efficient bi-level multi objective approach for budget-constrained dynamic Bag-of-Tasks scheduling problem in heterogeneous multi-cloud environment | |
Garg et al. | Multi-objective workflow grid scheduling using ε-fuzzy dominance sort based discrete particle swarm optimization | |
Milan et al. | Priority-based task scheduling method over cloudlet using a swarm intelligence algorithm | |
Banerjee et al. | MTD-DHJS: makespan-optimized task scheduling algorithm for cloud computing with dynamic computational time prediction | |
Siddesha et al. | A novel deep reinforcement learning scheme for task scheduling in cloud computing | |
Jalali Khalil Abadi et al. | A comprehensive survey on scheduling algorithms using fuzzy systems in distributed environments | |
Mohammadzadeh et al. | Energy-aware workflow scheduling in fog computing using a hybrid chaotic algorithm | |
Saif et al. | Hybrid meta-heuristic genetic algorithm: Differential evolution algorithms for scientific workflow scheduling in heterogeneous cloud environment | |
Yadav et al. | An opposition-based hybrid evolutionary approach for task scheduling in fog computing network | |
Blank et al. | Handling constrained multi-objective optimization problems with heterogeneous evaluation times: proof-of-principle results | |
Verma et al. | A survey on energy‐efficient workflow scheduling algorithms in cloud computing | |
Jalalian et al. | A hierarchical multi-objective task scheduling approach for fast big data processing | |
Asghari et al. | The role of an ant colony optimisation algorithm in solving the major issues of the cloud computing | |
Kalai Arasan et al. | Energy‐efficient task scheduling and resource management in a cloud environment using optimized hybrid technology | |
Faraji-Mehmandar et al. | A self-learning approach for proactive resource and service provisioning in fog environment: M. Faraji-Mehmandar et al | |
Chauhan et al. | A systematic literature review on task allocation and performance management techniques in cloud data center | |
Baskar et al. | Hybrid prairie dog and Dwarf mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment | |
Enami et al. | Resource selection in computational grids based on learning automata |