NOEIAGHDAM et al., 2022 - Google Patents
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY. SERIES: MATHEMATICAL MODELLING, PROGRAMMING AND COMPUTER SOFTWARENOEIAGHDAM et al., 2022
- Document ID
- 4198039346321066924
- Author
- NOEIAGHDAM S
- BALAMURALITHARAN S
- GOVINDAN V
- Publication year
- Publication venue
- BULLETIN OF THE SOUTH URAL STATE UNIVERSITY. SERIES: MATHEMATICAL MODELLING, PROGRAMMING AND COMPUTER SOFTWARE Учредители: Южно-Уральский государственный университет (национальный исследовательский университет)
External Links
Snippet
The research work develops a Context aware Data Fusion with Ensemblebased Machine Learning Model (CDF-EMLM) for improving the health data treatment. This research work focuses on developing the improved context aware data fusion and efficient feature …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
- G06K9/627—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on distances between the pattern to be recognised and training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sansano et al. | A study of deep neural networks for human activity recognition | |
Tama et al. | Tree-based classifier ensembles for early detection method of diabetes: an exploratory study | |
US20190251461A1 (en) | Computer implemented determination method and system | |
Gudur et al. | Activeharnet: Towards on-device deep bayesian active learning for human activity recognition | |
US8112367B2 (en) | Episodic memory with a hierarchical temporal memory based system | |
JP2005509978A (en) | Ambiguous neural network with supervised and unsupervised cluster analysis | |
Jiang et al. | A resilient and hierarchical IoT-based solution for stress monitoring in everyday settings | |
Wen et al. | Sensor-based adaptive activity recognition with dynamically available sensors | |
Saranya et al. | IoT-based patient health data using improved context-aware data fusion and enhanced recursive feature elimination model | |
Sharma et al. | Data pre-processing using neural processes for modeling personalized vital-sign time-series data | |
Dhiravidachelvi et al. | Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services. | |
Gerych et al. | Gan for generating user-specific human activity data from an incomplete training corpus | |
Abolade | Bridging Mathematical Foundations and Intelligent Systems: A Statistical and Machine Learning Approach | |
Chieu et al. | Activity recognition from physiological data using conditional random fields | |
Afrin et al. | Supervised and unsupervised-based analytics of intensive care unit data | |
NOEIAGHDAM et al. | BULLETIN OF THE SOUTH URAL STATE UNIVERSITY. SERIES: MATHEMATICAL MODELLING, PROGRAMMING AND COMPUTER SOFTWARE | |
Amrani | Model-centric and data-centric AI for personalization in human activity recognition | |
Nguyen et al. | Deep learning for simultaneous imputation and classification of time series incomplete data | |
Noeiaghdam et al. | Dynamic Bayesian network and hidden Markov model of predicting IoT data for machine learning model using enhanced recursive feature elimination | |
Dohnálek et al. | Application and comparison of modified classifiers for human activity recognition | |
Thiemjarus et al. | Context Aware Sensing | |
Zehraoui et al. | New self-organizing maps for multivariate sequences processing | |
Christodoulou et al. | Improving the performance of classification models with fuzzy cognitive maps | |
Shifani et al. | INNS: A Superficial Learning Scheme to Predict Complex Human Activity Behaviour using Improved Neural Network Schema | |
Kim et al. | ADELA: attention based deep ensemble learning for activity recognition in smart collaborative environments |