[go: up one dir, main page]

Skip to main content

Advertisement

Advertisement
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

No νs is Good News

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 September 2024
  • Volume 2024, article number 97, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
No νs is Good News
Download PDF
  • Nathaniel Craig  ORCID: orcid.org/0000-0003-2214-84471,2,
  • Daniel Green  ORCID: orcid.org/0000-0001-5496-03473,
  • Joel Meyers  ORCID: orcid.org/0000-0001-8510-28124 &
  • …
  • Surjeet Rajendran  ORCID: orcid.org/0000-0001-9915-35735 
  • 686 Accesses

  • 71 Citations

  • 5 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The baryon acoustic oscillation (BAO) analysis from the first year of data from the Dark Energy Spectroscopic Instrument (DESI), when combined with data from the cosmic microwave background (CMB), has placed an upper-limit on the sum of neutrino masses, ∑mν < 70 meV (95%). In addition to excluding the minimum sum associated with the inverted hierarchy, the posterior is peaked at ∑mν = 0 and is close to excluding even the minumum sum, 58 meV at 2σ. In this paper, we explore the implications of this data for cosmology and particle physics. The sum of neutrino mass is determined in cosmology from the suppression of clustering in the late universe. Allowing the clustering to be enhanced, we extended the DESI analysis to ∑mν < 0 and find ∑mν =160±90 meV (68%), and that the suppression of power from the minimum sum of neutrino masses is excluded at 99% confidence. We show this preference for negative masses makes it challenging to explain the result by a shift of cosmic parameters, such as the optical depth or matter density. We then show how a result of ∑mν = 0 could arise from new physics in the neutrino sector, including decay, cooling, and/or time-dependent masses. These models are consistent with current observations but imply new physics that is accessible in a wide range of experiments. In addition, we discuss how an apparent signal with ∑mν < 0 can arise from new long range forces in the dark sector or from a primordial trispectrum that resembles the signal of CMB lensing.

Article PDF

Download to read the full article text

Similar content being viewed by others

Improved cosmological constraints on the neutrino mass and lifetime

Article Open access 04 August 2022

First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations

Article 25 February 2019

Constraints on the neutrino mass and mass hierarchy from cosmological observations

Article Open access 06 September 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Astrophysics
  • Astronomy, Cosmology and Space Sciences
  • Cosmology
  • Gravitational Physics
  • Particle Physics
  • Physics and Astronomy

References

  1. J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307 [astro-ph/0603494] [INSPIRE].

  2. Topical Conveners collaboration, Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, Astropart. Phys. 63 (2015) 66 [arXiv:1309.5383] [INSPIRE].

  3. C. Dvorkin et al., Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model, arXiv:1903.03689 [INSPIRE].

  4. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  5. A. Font-Ribera et al., DESI and other dark energy experiments in the era of neutrino mass measurements, JCAP 05 (2014) 023 [arXiv:1308.4164] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  7. DESI collaboration, The DESI Experiment Part I: Science,Targeting, and Survey Design, arXiv:1611.00036 [INSPIRE].

  8. M. Kaplinghat, L. Knox and Y.-S. Song, Determining neutrino mass from the CMB alone, Phys. Rev. Lett. 91 (2003) 241301 [astro-ph/0303344] [INSPIRE].

  9. Z. Pan and L. Knox, Constraints on neutrino mass from Cosmic Microwave Background and Large Scale Structure, Mon. Not. Roy. Astron. Soc. 454 (2015) 3200 [arXiv:1506.07493] [INSPIRE].

    Article  ADS  Google Scholar 

  10. DESI collaboration, DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations, arXiv:2404.03002 [INSPIRE].

  11. Planck collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys. 641 (2020) A5 [arXiv:1907.12875] [INSPIRE].

  12. J. Carron, M. Mirmelstein and A. Lewis, CMB lensing from Planck PR4 maps, JCAP 09 (2022) 039 [arXiv:2206.07773] [INSPIRE].

    Article  ADS  Google Scholar 

  13. ACT collaboration, The Atacama Cosmology Telescope: A measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth, Astrophys. J. 962 (2024) 112 [arXiv:2304.05202] [INSPIRE].

  14. ACT collaboration, The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters, Astrophys. J. 962 (2024) 113 [arXiv:2304.05203] [INSPIRE].

  15. S. Brieden, H. Gil-Marín and L. Verde, Model-agnostic interpretation of 10 billion years of cosmic evolution traced by BOSS and eBOSS data, JCAP 08 (2022) 024 [arXiv:2204.11868] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Palanque-Delabrouille et al., Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data, JCAP 04 (2020) 038 [arXiv:1911.09073] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Planck collaboration, Planck intermediate results. XVI. Profile likelihoods for cosmological parameters, Astron. Astrophys. 566 (2014) A54 [arXiv:1311.1657] [INSPIRE].

  18. F. Couchot et al., Cosmological constraints on the neutrino mass including systematic uncertainties, Astron. Astrophys. 606 (2017) A104 [arXiv:1703.10829] [INSPIRE].

    Article  Google Scholar 

  19. eBOSS collaboration, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103 (2021) 083533 [arXiv:2007.08991] [INSPIRE].

  20. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  21. B. Follin, L. Knox, M. Millea and Z. Pan, First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background, Phys. Rev. Lett. 115 (2015) 091301 [arXiv:1503.07863] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Baumann et al., First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations, Nature Phys. 15 (2019) 465 [arXiv:1803.10741] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F.-Y. Cyr-Racine and K. Sigurdson, Limits on Neutrino-Neutrino Scattering in the Early Universe, Phys. Rev. D 90 (2014) 123533 [arXiv:1306.1536] [INSPIRE].

    Article  ADS  Google Scholar 

  25. L. Lancaster, F.-Y. Cyr-Racine, L. Knox and Z. Pan, A tale of two modes: Neutrino free-streaming in the early universe, JCAP 07 (2017) 033 [arXiv:1704.06657] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. He, R. An, M.M. Ivanov and V. Gluscevic, Self-interacting neutrinos in light of large-scale structure data, Phys. Rev. D 109 (2024) 103527 [arXiv:2309.03956] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Camarena, F.-Y. Cyr-Racine and J. Houghteling, Confronting self-interacting neutrinos with the full shape of the galaxy power spectrum, Phys. Rev. D 108 (2023) 103535 [arXiv:2309.03941] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Camarena and F.-Y. Cyr-Racine, Absence of concordance in a simple self-interacting neutrino cosmology, arXiv:2403.05496 [INSPIRE].

  29. D. Green and J. Meyers, Cosmological Implications of a Neutrino Mass Detection, arXiv:2111.01096 [INSPIRE].

  30. D. Green, Cosmic Signals of Fundamental Physics, PoS TASI2022 (2024) 005 [arXiv:2212.08685] [INSPIRE].

  31. A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Phys. Rept. 429 (2006) 1 [astro-ph/0601594] [INSPIRE].

  32. A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

  33. C. Howlett, A. Lewis, A. Hall and A. Challinor, CMB power spectrum parameter degeneracies in the era of precision cosmology, JCAP 04 (2012) 027 [arXiv:1201.3654] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

    Article  ADS  Google Scholar 

  35. DESI collaboration, DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest, arXiv:2404.03001 [INSPIRE].

  36. DESI collaboration, DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars, arXiv:2404.03000 [INSPIRE].

  37. J. Torrado and A. Lewis, Cobaya: Code for Bayesian Analysis of hierarchical physical models, JCAP 05 (2021) 057 [arXiv:2005.05290] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].

  39. A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013) 103529 [arXiv:1304.4473] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R.M. Neal, Taking Bigger Metropolis Steps by Dragging Fast Variables, math/0502099 [INSPIRE].

  41. E. Abdalla et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, JHEAp 34 (2022) 49 [arXiv:2203.06142] [INSPIRE].

    ADS  Google Scholar 

  42. WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207] [INSPIRE].

  43. WMAP collaboration, Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [INSPIRE].

  44. WMAP collaboration, Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].

  45. WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

  46. WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

  47. Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

  48. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  49. Planck collaboration, Planck intermediate results. LVII. Joint Planck LFI and HFI data processing, Astron. Astrophys. 643 (2020) A42 [arXiv:2007.04997] [INSPIRE].

  50. M. Tristram et al., Cosmological parameters derived from the final Planck data release (PR4), Astron. Astrophys. 682 (2024) A37 [arXiv:2309.10034] [INSPIRE].

    Article  Google Scholar 

  51. T. Essinger-Hileman et al., CLASS: The Cosmology Large Angular Scale Surveyor, Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014) 91531I [arXiv:1408.4788] [INSPIRE].

    Google Scholar 

  52. J.R. Eimer et al., CLASS Angular Power Spectra and Map-component Analysis for 40 GHz Observations through 2022, Astrophys. J. 963 (2024) 92 [arXiv:2309.00675] [INSPIRE].

    Article  ADS  Google Scholar 

  53. LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, PTEP 2023 (2023) 042F01 [arXiv:2202.02773] [INSPIRE].

  54. J. Errard et al., Constraints on the Optical Depth to Reionization from Balloon-borne Cosmic Microwave Background Measurements, Astrophys. J. 940 (2022) 68 [arXiv:2206.03389] [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Yu et al., Toward neutrino mass from cosmology without optical depth information, Phys. Rev. D 107 (2023) 123522 [arXiv:1809.02120] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Brinckmann et al., The promising future of a robust cosmological neutrino mass measurement, JCAP 01 (2019) 059 [arXiv:1808.05955] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K.M. Smith and S. Ferraro, Detecting Patchy Reionization in the Cosmic Microwave Background, Phys. Rev. Lett. 119 (2017) 021301 [arXiv:1607.01769] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Ferraro and K.M. Smith, Characterizing the epoch of reionization with the small-scale CMB: Constraints on the optical depth and duration, Phys. Rev. D 98 (2018) 123519 [arXiv:1803.07036] [INSPIRE].

    Article  ADS  Google Scholar 

  59. M.A. Alvarez et al., Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel’dovich effect with CMB-S4, Phys. Rev. D 103 (2021) 063518 [arXiv:2006.06594] [INSPIRE].

    Article  ADS  Google Scholar 

  60. K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv:1907.04473 [INSPIRE].

  61. S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ – 1 are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [INSPIRE].

    Article  ADS  Google Scholar 

  62. K.V. Berghaus, J.A. Kable and V. Miranda, Quantifying Scalar Field Dynamics with DESI 2024 Y1 BAO measurements, arXiv:2404.14341 [INSPIRE].

  63. R. Allison et al., Towards a cosmological neutrino mass detection, Phys. Rev. D 92 (2015) 123535 [arXiv:1509.07471] [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Hu and T. Okamoto, Mass reconstruction with cmb polarization, Astrophys. J. 574 (2002) 566 [astro-ph/0111606] [INSPIRE].

  65. U. Seljak and C.M. Hirata, Gravitational lensing as a contaminant of the gravity wave signal in CMB, Phys. Rev. D 69 (2004) 043005 [astro-ph/0310163] [INSPIRE].

  66. D. Green, J. Meyers and A. van Engelen, CMB Delensing Beyond the B Modes, JCAP 12 (2017) 005 [arXiv:1609.08143] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. S.C. Hotinli et al., The benefits of CMB delensing, JCAP 04 (2022) 020 [arXiv:2111.15036] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. A. van Engelen et al., CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps, Astrophys. J. 786 (2014) 13 [arXiv:1310.7023] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J.L. Aalberts et al., Precision constraints on radiative neutrino decay with CMB spectral distortion, Phys. Rev. D 98 (2018) 023001 [arXiv:1803.00588] [INSPIRE].

    Article  ADS  Google Scholar 

  70. G. Barenboim et al., Invisible neutrino decay in precision cosmology, JCAP 03 (2021) 087 [arXiv:2011.01502] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Z. Chacko et al., Cosmological Limits on the Neutrino Mass and Lifetime, JHEP 04 (2020) 020 [arXiv:1909.05275] [INSPIRE].

    Article  ADS  Google Scholar 

  72. Z. Chacko et al., Determining the Neutrino Lifetime from Cosmology, Phys. Rev. D 103 (2021) 043519 [arXiv:2002.08401] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Escudero, J. Lopez-Pavon, N. Rius and S. Sandner, Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos, JHEP 12 (2020) 119 [arXiv:2007.04994] [INSPIRE].

    Article  ADS  Google Scholar 

  74. G. Franco Abellán et al., Improved cosmological constraints on the neutrino mass and lifetime, JHEP 08 (2022) 076 [arXiv:2112.13862] [INSPIRE].

    Article  Google Scholar 

  75. M. Escudero, T. Schwetz and J. Terol-Calvo, A seesaw model for large neutrino masses in concordance with cosmology, JHEP 02 (2023) 142 [Addendum ibid. 06 (2024) 119] [arXiv:2211.01729] [INSPIRE].

  76. KATRIN collaboration, Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160 [arXiv:2105.08533] [INSPIRE].

  77. Y. Farzan, Bounds on the coupling of the Majoron to light neutrinos from supernova cooling, Phys. Rev. D 67 (2003) 073015 [hep-ph/0211375] [INSPIRE].

  78. Z. Chacko, L.J. Hall, T. Okui and S.J. Oliver, CMB signals of neutrino mass generation, Phys. Rev. D 70 (2004) 085008 [hep-ph/0312267] [INSPIRE].

  79. A. Friedland, K.M. Zurek and S. Bashinsky, Constraining Models of Neutrino Mass and Neutrino Interactions with the Planck Satellite, arXiv:0704.3271 [INSPIRE].

  80. M. Archidiacono and S. Hannestad, Updated constraints on non-standard neutrino interactions from Planck, JCAP 07 (2014) 046 [arXiv:1311.3873] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Baumann, D. Green and B. Wallisch, New Target for Cosmic Axion Searches, Phys. Rev. Lett. 117 (2016) 171301 [arXiv:1604.08614] [INSPIRE].

    Article  ADS  Google Scholar 

  82. G.B. Gelmini and J.W.F. Valle, Fast Invisible Neutrino Decays, Phys. Lett. B 142 (1984) 181 [INSPIRE].

  83. M. Ekhterachian, A. Hook, S. Kumar and Y. Tsai, Bounds on gauge bosons coupled to nonconserved currents, Phys. Rev. D 104 (2021) 035034 [arXiv:2103.13396] [INSPIRE].

    Article  ADS  Google Scholar 

  84. J.F. Beacom, N.F. Bell and S. Dodelson, Neutrinoless universe, Phys. Rev. Lett. 93 (2004) 121302 [astro-ph/0404585] [INSPIRE].

  85. Y. Farzan and S. Hannestad, Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, JCAP 02 (2016) 058 [arXiv:1510.02201] [INSPIRE].

    Article  ADS  Google Scholar 

  86. G. Mangano et al., Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [INSPIRE].

  87. M. Escudero Abenza, Precision early universe thermodynamics made simple: Neff and neutrino decoupling in the Standard Model and beyond, JCAP 05 (2020) 048 [arXiv:2001.04466] [INSPIRE].

    Article  ADS  Google Scholar 

  88. K. Akita and M. Yamaguchi, A precision calculation of relic neutrino decoupling, JCAP 08 (2020) 012 [arXiv:2005.07047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. J. Froustey, C. Pitrou and M.C. Volpe, Neutrino decoupling including flavour oscillations and primordial nucleosynthesis, JCAP 12 (2020) 015 [arXiv:2008.01074] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. J.J. Bennett et al., Towards a precision calculation of Neff in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED, JCAP 04 (2021) 073 [arXiv:2012.02726] [INSPIRE].

    Article  ADS  Google Scholar 

  91. J.R. Bond et al., Cosmic Neutrino Decoupling and its Observable Imprints: Insights from Entropic-Dual Transport, arXiv:2403.19038 [INSPIRE].

  92. B.D. Fields, K.A. Olive, T.-H. Yeh and C. Young, Big-Bang Nucleosynthesis after Planck, JCAP 03 (2020) 010 [Erratum ibid. 11 (2020) E02] [arXiv:1912.01132] [INSPIRE].

  93. D. Green, D.E. Kaplan and S. Rajendran, Neutrino interactions in the late universe, JHEP 11 (2021) 162 [arXiv:2108.06928] [INSPIRE].

    Article  ADS  Google Scholar 

  94. K.M. Nollett and G. Steigman, BBN And The CMB Constrain Neutrino Coupled Light WIMPs, Phys. Rev. D 91 (2015) 083505 [arXiv:1411.6005] [INSPIRE].

    Article  ADS  Google Scholar 

  95. SDSS collaboration, The Lyman-alpha forest power spectrum from the Sloan Digital Sky Survey, Astrophys. J. Suppl. 163 (2006) 80 [astro-ph/0405013] [INSPIRE].

  96. M. Viel et al., Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].

  97. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].

    Article  ADS  Google Scholar 

  98. W.L. Xu, C. Dvorkin and A. Chael, Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables, Phys. Rev. D 97 (2018) 103530 [arXiv:1802.06788] [INSPIRE].

    Article  ADS  Google Scholar 

  99. E.O. Nadler, V. Gluscevic, K.K. Boddy and R.H. Wechsler, Constraints on Dark Matter Microphysics from the Milky Way Satellite Population, Astrophys. J. Lett. 878 (2019) 32 [Erratum ibid. 897 (2020) L46] [arXiv:1904.10000] [INSPIRE].

  100. K. Maamari et al., Bounds on velocity-dependent dark matter-proton scattering from Milky Way satellite abundance, Astrophys. J. Lett. 907 (2021) L46 [arXiv:2010.02936] [INSPIRE].

    Article  ADS  Google Scholar 

  101. L. Kofman, D. Pogosyan and A.A. Starobinsky, The large scale microwave backbround anisotropy in unstable cosmologies, Sov. Astron. Lett. 12 (1986) 175 [INSPIRE].

  102. S. De Lope Amigo, W.M.-Y. Cheung, Z. Huang and S.-P. Ng, Cosmological Constraints on Decaying Dark Matter, JCAP 06 (2009) 005 [arXiv:0812.4016] [INSPIRE].

    Article  Google Scholar 

  103. B. Audren et al., Strongest model-independent bound on the lifetime of Dark Matter, JCAP 12 (2014) 028 [arXiv:1407.2418] [INSPIRE].

    Article  ADS  Google Scholar 

  104. V. Poulin, P.D. Serpico and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, JCAP 08 (2016) 036 [arXiv:1606.02073] [INSPIRE].

    Article  ADS  Google Scholar 

  105. R. Fardon, A.E. Nelson and N. Weiner, Dark energy from mass varying neutrinos, JCAP 10 (2004) 005 [astro-ph/0309800] [INSPIRE].

  106. C.S. Lorenz, L. Funcke, E. Calabrese and S. Hannestad, Time-varying neutrino mass from a supercooled phase transition: current cosmological constraints and impact on the Ωm-σ8 plane, Phys. Rev. D 99 (2019) 023501 [arXiv:1811.01991] [INSPIRE].

    Article  ADS  Google Scholar 

  107. C.S. Lorenz, L. Funcke, M. Löffler and E. Calabrese, Reconstruction of the neutrino mass as a function of redshift, Phys. Rev. D 104 (2021) 123518 [arXiv:2102.13618] [INSPIRE].

    Article  ADS  Google Scholar 

  108. H. Davoudiasl, G. Mohlabeng and M. Sullivan, Galactic Dark Matter Population as the Source of Neutrino Masses, Phys. Rev. D 98 (2018) 021301 [arXiv:1803.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  109. F.-Y. Cyr-Racine, F. Ge and L. Knox, Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant, Phys. Rev. Lett. 128 (2022) 201301 [arXiv:2107.13000] [INSPIRE].

    Article  ADS  Google Scholar 

  110. F. Ge, F.-Y. Cyr-Racine and L. Knox, Scaling transformations and the origins of light relics constraints from cosmic microwave background observations, Phys. Rev. D 107 (2023) 023517 [arXiv:2210.16335] [INSPIRE].

    Article  ADS  Google Scholar 

  111. N. Arkani-Hamed et al., Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom, Phys. Rev. Lett. 117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].

    Article  ADS  Google Scholar 

  112. Z. Chacko, N. Craig, P.J. Fox and R. Harnik, Cosmology in Mirror Twin Higgs and Neutrino Masses, JHEP 07 (2017) 023 [arXiv:1611.07975] [INSPIRE].

    Article  ADS  Google Scholar 

  113. Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Cosmological Signatures of a Mirror Twin Higgs, JHEP 09 (2018) 163 [arXiv:1803.03263] [INSPIRE].

    Article  ADS  Google Scholar 

  114. C.M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].

    Article  Google Scholar 

  115. M. Kesden and M. Kamionkowski, Galilean Equivalence for Galactic Dark Matter, Phys. Rev. Lett. 97 (2006) 131303 [astro-ph/0606566] [INSPIRE].

  116. M. Kesden and M. Kamionkowski, Tidal Tails Test the Equivalence Principle in the Dark Sector, Phys. Rev. D 74 (2006) 083007 [astro-ph/0608095] [INSPIRE].

  117. J.A. Keselman, A. Nusser and P.J.E. Peebles, Cosmology with Equivalence Principle Breaking in the Dark Sector, Phys. Rev. D 81 (2010) 063521 [arXiv:0912.4177] [INSPIRE].

    Article  ADS  Google Scholar 

  118. Z. Bogorad, P.W. Graham and H. Ramani, Coherent Self-Interactions of Dark Matter in the Bullet Cluster, arXiv:2311.07648 [INSPIRE].

  119. M. Archidiacono, E. Castorina, D. Redigolo and E. Salvioni, Unveiling dark fifth forces with linear cosmology, JCAP 10 (2022) 074 [arXiv:2204.08484] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  120. S. Bottaro et al., Unveiling Dark Forces with Measurements of the Large Scale Structure of the Universe, Phys. Rev. Lett. 132 (2024) 201002 [arXiv:2309.11496] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  121. P. Creminelli, J. Noreña, M. Simonović and F. Vernizzi, Single-Field Consistency Relations of Large Scale Structure, JCAP 12 (2013) 025 [arXiv:1309.3557] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  122. P. Creminelli, J. Gleyzes, M. Simonović and F. Vernizzi, Single-Field Consistency Relations of Large Scale Structure. Part II: Resummation and Redshift Space, JCAP 02 (2014) 051 [arXiv:1311.0290] [INSPIRE].

  123. P. Creminelli et al., Single-Field Consistency Relations of Large Scale Structure. Part III: Test of the Equivalence Principle, JCAP 06 (2014) 009 [arXiv:1312.6074] [INSPIRE].

  124. F. Saracco et al., Non-linear Matter Spectra in Coupled Quintessence, Phys. Rev. D 82 (2010) 023528 [arXiv:0911.5396] [INSPIRE].

    Article  ADS  Google Scholar 

  125. Y. Bai, S. Lu and N. Orlofsky, Gravitational waves from more attractive dark binaries, JCAP 08 (2024) 057 [arXiv:2312.13378] [INSPIRE].

    Article  Google Scholar 

  126. W. Hu, Angular trispectrum of the CMB, Phys. Rev. D 64 (2001) 083005 [astro-ph/0105117] [INSPIRE].

  127. T. Okamoto and W. Hu, The angular trispectra of CMB temperature and polarization, Phys. Rev. D 66 (2002) 063008 [astro-ph/0206155] [INSPIRE].

  128. D. Hanson and A. Lewis, Estimators for CMB Statistical Anisotropy, Phys. Rev. D 80 (2009) 063004 [arXiv:0908.0963] [INSPIRE].

    Article  ADS  Google Scholar 

  129. K. Marzouk, A. Lewis and J. Carron, Constraints on τNL from Planck temperature and polarization, JCAP 08 (2022) 015 [arXiv:2205.14408] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  130. K.M. Smith, L. Senatore and M. Zaldarriaga, Optimal analysis of the CMB trispectrum, arXiv:1502.00635 [INSPIRE].

  131. K.M. Smith, M. LoVerde and M. Zaldarriaga, A universal bound on N-point correlations from inflation, Phys. Rev. Lett. 107 (2011) 191301 [arXiv:1108.1805] [INSPIRE].

    Article  ADS  Google Scholar 

  132. D. Green, Y. Huang, C.-H. Shen and D. Baumann, Positivity from Cosmological Correlators, JHEP 04 (2024) 034 [arXiv:2310.02490] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  133. Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [arXiv:1905.05697] [INSPIRE].

  134. S. Ferraro and K.M. Smith, Using large scale structure to measure fNL, gNL and τNL, Phys. Rev. D 91 (2015) 043506 [arXiv:1408.3126] [INSPIRE].

    Article  ADS  Google Scholar 

  135. J.-O. Gong and S. Yokoyama, Scale dependent bias from primordial non-Gaussianity with trispectrum, Mon. Not. Roy. Astron. Soc. 417 (2011) 79 [arXiv:1106.4404] [INSPIRE].

    Article  Google Scholar 

  136. D. Baumann, S. Ferraro, D. Green and K.M. Smith, Stochastic Bias from Non-Gaussian Initial Conditions, JCAP 05 (2013) 001 [arXiv:1209.2173] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  137. N. Anil Kumar, G. Sato-Polito, M. Kamionkowski and S.C. Hotinli, Primordial trispectrum from kinetic Sunyaev-Zel’dovich tomography, Phys. Rev. D 106 (2022) 063533 [arXiv:2205.03423] [INSPIRE].

  138. Planck collaboration, Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys. 641 (2020) A8 [arXiv:1807.06210] [INSPIRE].

  139. D. Green, Y. Guo, J. Han and B. Wallisch, Light fields during inflation from BOSS and future galaxy surveys, JCAP 05 (2024) 090 [arXiv:2311.04882] [INSPIRE].

    Article  ADS  Google Scholar 

  140. EUCLID collaboration, Euclid Definition Study Report, arXiv:1110.3193 [INSPIRE].

  141. SPHEREx collaboration, Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].

  142. C. Shiveshwarkar, T. Brinckmann and M. Loverde, Constraining multi-field inflation using the SPHEREx all-sky survey power spectra, JCAP 05 (2024) 094 [arXiv:2312.15038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  143. D. Green, Disorder in the Early Universe, JCAP 03 (2015) 020 [arXiv:1409.6698] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  144. M. Forconi, E. Di Valentino, A. Melchiorri and S. Pan, Possible impact of non-Gaussianities on cosmological constraints in neutrino physics, Phys. Rev. D 109 (2024) 123532 [arXiv:2311.04038] [INSPIRE].

    Article  Google Scholar 

  145. M. Takada and W. Hu, Power Spectrum Super-Sample Covariance, Phys. Rev. D 87 (2013) 123504 [arXiv:1302.6994] [INSPIRE].

    Article  ADS  Google Scholar 

  146. W.L. Xu, J.B. Muñoz and C. Dvorkin, Cosmological constraints on light but massive relics, Phys. Rev. D 105 (2022) 095029 [arXiv:2107.09664] [INSPIRE].

    Article  ADS  Google Scholar 

  147. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

  148. K. Osato et al., Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear, JCAP 06 (2016) 004 [arXiv:1601.07386] [INSPIRE].

    Article  ADS  Google Scholar 

  149. F. Pérez and B.E. Granger, IPython: A System for Interactive Scientific Computing, Comput. Sci. Eng. 9 (2007) 21 [INSPIRE].

  150. J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].

  151. C.R. Harris et al., Array programming with NumPy, Nature 585 (2020) 357 [arXiv:2006.10256] [INSPIRE].

    Article  ADS  Google Scholar 

  152. P. Virtanen et al., SciPy 1.0 — Fundamental Algorithms for Scientific Computing in Python, Nature Meth. 17 (2020) 261 [arXiv:1907.10121] [INSPIRE].

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Kim Berghaus, Tim Cohen, Raphael Flauger, George Fuller, Peter Graham, Jiashu Han, Colin Hill, Mustapha Ishak, Thomas Konstandin, Tongyan Lin, and Ben Wallisch for helpful discussions. NC is supported by the US Department of Energy under grant DE-SC0011702. DG is supported by the US Department of Energy under grant DE-SC0009919. This work was supported by the U.S. Department of Energy (DOE), Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under Contract No. DE-AC02-07CH11359. S.R. is also supported in part by the U.S. National Science Foundation (NSF) under Grant No. PHY-1818899, the Simons Investigator Grant No. 827042, and by the DOE under a QuantISED grant for MAGIS and Fermilab. JM is supported by the US Department of Energy under grant DE-SC0010129. Computational resources for this research were provided by SMU’s Center for Research Computing. We acknowledge the use of CAMB [32], CLASS [34], IPython [149], and the Python packages Matplotlib [150], NumPy [151], and SciPy [152].

Author information

Authors and Affiliations

  1. Department of Physics, University of California, Santa Barbara, CA, 93106, USA

    Nathaniel Craig

  2. Kavli Institute for Theoretical Physics, Santa Barbara, CA, 93106, USA

    Nathaniel Craig

  3. Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA

    Daniel Green

  4. Department of Physics, Southern Methodist University, Dallas, TX, 75275, USA

    Joel Meyers

  5. Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, MD, 21218, USA

    Surjeet Rajendran

Authors
  1. Nathaniel Craig
    View author publications

    Search author on:PubMed Google Scholar

  2. Daniel Green
    View author publications

    Search author on:PubMed Google Scholar

  3. Joel Meyers
    View author publications

    Search author on:PubMed Google Scholar

  4. Surjeet Rajendran
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Daniel Green.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2405.00836

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, N., Green, D., Meyers, J. et al. No νs is Good News. J. High Energ. Phys. 2024, 97 (2024). https://doi.org/10.1007/JHEP09(2024)097

Download citation

  • Received: 10 June 2024

  • Accepted: 25 August 2024

  • Published: 17 September 2024

  • Version of record: 17 September 2024

  • DOI: https://doi.org/10.1007/JHEP09(2024)097

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories BSM
  • Early Universe Particle Physics
  • Neutrino Interactions
  • Non-Standard Neutrino Properties

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature