[go: up one dir, main page]

Skip to main content

Advertisement

Advertisement
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Improved cosmological constraints on the neutrino mass and lifetime

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 04 August 2022
  • Volume 2022, article number 76, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
Improved cosmological constraints on the neutrino mass and lifetime
Download PDF
  • Guillermo Franco Abellán1,
  • Zackaria Chacko2,
  • Abhish Dev3,
  • Peizhi Du4,
  • Vivian Poulin1 &
  • …
  • Yuhsin Tsai5 
  • 574 Accesses

  • 39 Citations

  • 10 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present cosmological constraints on the sum of neutrino masses as a function of the neutrino lifetime, in a framework in which neutrinos decay into dark radiation after becoming non-relativistic. We find that in this regime the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO) and (uncalibrated) luminosity distance to supernovae from the Pantheon catalog constrain the sum of neutrino masses ∑mν to obey ∑mν < 0.42 eV at (95% C.L.). While the bound has improved significantly as compared to the limits on the same scenario from Planck 2015, it still represents a significant relaxation of the constraints as compared to the stable neutrino case. We show that most of the improvement can be traced to the more precise measurements of low-ℓ polarization data in Planck 2018, which leads to tighter constraints on τreio (and thereby on As), breaking the degeneracy arising from the effect of (large) neutrino masses on the amplitude of the CMB power spectrum.

Article PDF

Download to read the full article text

Similar content being viewed by others

Cornering (quasi) degenerate neutrinos with cosmology

Article Open access 30 October 2020

Neutrino Masses in Cosmology

Article 01 December 2024

Cosmological limits on the neutrino mass and lifetime

Article Open access 03 April 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Astronomy, Cosmology and Space Sciences
  • Computational Cosmology
  • Cosmology
  • Foundations of Physics and Cosmology
  • General Relativity
  • Physics and Astronomy

References

  1. J. R. Bond, G. Efstathiou and J. Silk, Massive Neutrinos and the Large Scale Structure of the Universe, Phys. Rev. Lett. 45 (1980) 1980 [INSPIRE].

    Article  ADS  Google Scholar 

  2. W. Hu, D. J. Eisenstein and M. Tegmark, Weighing neutrinos with galaxy surveys, Phys. Rev. Lett. 80 (1998) 5255 [astro-ph/9712057] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Y. Y. Wong, Neutrino mass in cosmology: status and prospects, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69 [arXiv:1111.1436] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Lesgourgues, G. Mangano, G. Miele and S. Pastor, Neutrino Cosmology, Cambridge University Press, Cambridge, U.K. (2013) [DOI].

  5. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  6. M. Gerbino and M. Lattanzi, Status of neutrino properties and future prospects — Cosmological and astrophysical constraints, Front. Phys. 5 (2018) 70.

  7. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  8. P. D. Serpico, Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime, Phys. Rev. Lett. 98 (2007) 171301 [astro-ph/0701699] [INSPIRE].

  9. P. D. Serpico, Neutrinos and cosmology: a lifetime relationship, J. Phys. Conf. Ser. 173 (2009) 012018 [INSPIRE].

    Article  Google Scholar 

  10. J. F. Beacom, N. F. Bell and S. Dodelson, Neutrinoless universe, Phys. Rev. Lett. 93 (2004) 121302 [astro-ph/0404585] [INSPIRE].

  11. Y. Farzan and S. Hannestad, Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, JCAP 02 (2016) 058 [arXiv:1510.02201] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. L. Aalberts et al., Precision constraints on radiative neutrino decay with CMB spectral distortion, Phys. Rev. D 98 (2018) 023001 [arXiv:1803.00588] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Barenboim, J. Z. Chen, S. Hannestad, I. M. Oldengott, T. Tram and Y. Y. Y. Wong, Invisible neutrino decay in precision cosmology, JCAP 03 (2021) 087 [arXiv:2011.01502] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Hannestad and G. Raffelt, Constraining invisible neutrino decays with the cosmic microwave background, Phys. Rev. D 72 (2005) 103514 [hep-ph/0509278] [INSPIRE].

  15. A. Basboll, O.E. Bjaelde, S. Hannestad and G. G. Raffelt, Are cosmological neutrinos free-streaming?, Phys. Rev. D 79 (2009) 043512 [arXiv:0806.1735] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Archidiacono and S. Hannestad, Updated constraints on non-standard neutrino interactions from Planck, JCAP 07 (2014) 046 [arXiv:1311.3873] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Escudero and M. Fairbairn, Cosmological Constraints on Invisible Neutrino Decays Revisited, Phys. Rev. D 100 (2019) 103531 [arXiv:1907.05425] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Z. Chacko, A. Dev, P. Du, V. Poulin and Y. Tsai, Cosmological Limits on the Neutrino Mass and Lifetime, JHEP 04 (2020) 020 [arXiv:1909.05275] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Chacko, A. Dev, P. Du, V. Poulin and Y. Tsai, Determining the Neutrino Lifetime from Cosmology, Phys. Rev. D 103 (2021) 043519 [arXiv:2002.08401] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. A. Frieman, H. E. Haber and K. Freese, Neutrino Mixing, Decays and Supernova Sn1987a, Phys. Lett. B 200 (1988) 115 [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. S. Joshipura, E. Masso and S. Mohanty, Constraints on decay plus oscillation solutions of the solar neutrino problem, Phys. Rev. D 66 (2002) 113008 [hep-ph/0203181] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. F. Beacom and N. F. Bell, Do Solar Neutrinos Decay?, Phys. Rev. D 65 (2002) 113009 [hep-ph/0204111] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. M. Berryman, A. de Gouvêa and D. Hernandez, Solar Neutrinos and the Decaying Neutrino Hypothesis, Phys. Rev. D 92 (2015) 073003 [arXiv:1411.0308] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Baerwald, M. Bustamante and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10 (2012) 020 [arXiv:1208.4600] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Pagliaroli, A. Palladino, F. L. Villante and F. Vissani, Testing nonradiative neutrino decay scenarios with IceCube data, Phys. Rev. D 92 (2015) 113008 [arXiv:1506.02624] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Bustamante, J. F. Beacom and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95 (2017) 063013 [arXiv:1610.02096] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. B. Denton and I. Tamborra, Invisible Neutrino Decay Could Resolve IceCube’s Track and Cascade Tension, Phys. Rev. Lett. 121 (2018) 121802 [arXiv:1805.05950] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Abdullahi and P. B. Denton, Visible Decay of Astrophysical Neutrinos at IceCube, Phys. Rev. D 102 (2020) 023018 [arXiv:2005.07200] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Bustamante, New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, arXiv:2004.06844 [INSPIRE].

  31. M. C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. A. Gomes, A. L. G. Gomes and O. L. G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Choubey, D. Dutta and D. Pramanik, Invisible neutrino decay in the light of NOvA and T2K data, JHEP 08 (2018) 141 [arXiv:1805.01848] [INSPIRE].

    Article  ADS  Google Scholar 

  34. SNO collaboration, Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory, Phys. Rev. D 99 (2019) 032013 [arXiv:1812.01088] [INSPIRE].

  35. C. S. Lorenz, L. Funcke, M. Löffler and E. Calabrese, Reconstruction of the neutrino mass as a function of redshift, Phys. Rev. D 104 (2021) 123518 [arXiv:2102.13618] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Escudero, J. Lopez-Pavon, N. Rius and S. Sandner, Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos, JHEP 12 (2020) 119 [arXiv:2007.04994] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. Audren et al., Robustness of cosmic neutrino background detection in the cosmic microwave background, JCAP 03 (2015) 036 [arXiv:1412.5948] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B. Follin, L. Knox, M. Millea and Z. Pan, First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background, Phys. Rev. Lett. 115 (2015) 091301 [arXiv:1503.07863] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Angrik et al., KATRIN design report 2004, (2005) [INSPIRE].

  42. M. Gerbino, M. Lattanzi, O. Mena and K. Freese, A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling, Phys. Lett. B 775 (2017) 239 [arXiv:1611.07847] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Caldwell, M. Ettengruber, A. Merle, O. Schulz and M. Totzauer, Global Bayesian analysis of neutrino mass data, Phys. Rev. D 96 (2017) 073001 [arXiv:1705.01945] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Vagnozzi et al., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503 [arXiv:1701.08172] [INSPIRE].

    Article  ADS  Google Scholar 

  45. F. Simpson, R. Jimenez, C. Pena-Garay and L. Verde, Strong Bayesian Evidence for the Normal Neutrino Hierarchy, JCAP 06 (2017) 029 [arXiv:1703.03425] [INSPIRE].

    Article  ADS  Google Scholar 

  46. E. Di Valentino, S. Gariazzo and O. Mena, Most constraining cosmological neutrino mass bounds, Phys. Rev. D 104 (2021) 083504 [arXiv:2106.15267] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Jimenez, C. Pena-Garay, K. Short, F. Simpson and L. Verde, Neutrino Masses and Mass Hierarchy: Evidence for the Normal Hierarchy, arXiv:2203.14247 [INSPIRE].

  48. T. Schwetz et al., Comment on “Strong Evidence for the Normal Neutrino Hierarchy”, arXiv:1703.04585 [INSPIRE].

  49. S. Gariazzo, M. Archidiacono, P. F. de Salas, O. Mena, C. A. Ternes and M. Tórtola, Neutrino masses and their ordering: Global Data, Priors and Models, JCAP 03 (2018) 011 [arXiv:1801.04946] [INSPIRE].

    Article  ADS  Google Scholar 

  50. L. T. Hergt, W. J. Handley, M. P. Hobson and A. N. Lasenby, Bayesian evidence for the tensor-to-scalar ratio r and neutrino masses mν: Effects of uniform vs logarithmic priors, Phys. Rev. D 103 (2021) 123511 [arXiv:2102.11511] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Gariazzo et al., Neutrino mass and mass ordering: No conclusive evidence for normal ordering, arXiv:2205.02195 [INSPIRE].

  52. N. Palanque-Delabrouille et al., Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data, JCAP 04 (2020) 038 [arXiv:1911.09073] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].

  54. V. Poulin, P. D. Serpico and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, JCAP 08 (2016) 036 [arXiv:1606.02073] [INSPIRE].

    Article  ADS  Google Scholar 

  55. N. Blinov, C. Keith and D. Hooper, Warm Decaying Dark Matter and the Hubble Tension, JCAP 06 (2020) 005 [arXiv:2004.06114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001 [arXiv:1210.7183] [INSPIRE].

    ADS  Google Scholar 

  57. T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ. 24 (2019) 100260.

  58. F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [INSPIRE].

  60. BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

  61. V. de Sainte Agathe et al., Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14, Astron. Astrophys. 629 (2019) A85 [arXiv:1904.03400] [INSPIRE].

    Article  Google Scholar 

  62. M. Blomqvist et al., Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14, Astron. Astrophys. 629 (2019) A86 [arXiv:1904.03430] [INSPIRE].

    Article  Google Scholar 

  63. Pan-STARRS1 collaboration, The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859 (2018) 101 [arXiv:1710.00845] [INSPIRE].

  64. A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992) 457.

  65. M. Archidiacono, T. Brinckmann, J. Lesgourgues and V. Poulin, Physical effects involved in the measurements of neutrino masses with future cosmological data, JCAP 02 (2017) 052 [arXiv:1610.09852] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo and A. Slosar, DESI and other dark energy experiments in the era of neutrino mass measurements, JCAP 05 (2014) 023 [arXiv:1308.4164] [INSPIRE].

    Article  ADS  Google Scholar 

  67. L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel. 21 (2018) 2 [arXiv:1606.00180] [INSPIRE].

    Article  Google Scholar 

  68. A. Liu, J. R. Pritchard, R. Allison, A. R. Parsons, U. Seljak and B. D. Sherwin, Eliminating the optical depth nuisance from the CMB with 21 cm cosmology, Phys. Rev. D 93 (2016) 043013 [arXiv:1509.08463] [INSPIRE].

    Article  ADS  Google Scholar 

  69. SKA Cosmology SWG collaboration, Overview of Cosmology with the SKA, PoS AASKA14 (2015) 016 [arXiv:1501.04076] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Laboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095, Montpellier Cedex 05, France

    Guillermo Franco Abellán & Vivian Poulin

  2. Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD, 20742-4111, USA

    Zackaria Chacko

  3. Theoretical Physics Department, Fermilab, P.O. Box 500, Batavia, IL, 60510, USA

    Abhish Dev

  4. C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, 11794, USA

    Peizhi Du

  5. Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA

    Yuhsin Tsai

Authors
  1. Guillermo Franco Abellán
    View author publications

    Search author on:PubMed Google Scholar

  2. Zackaria Chacko
    View author publications

    Search author on:PubMed Google Scholar

  3. Abhish Dev
    View author publications

    Search author on:PubMed Google Scholar

  4. Peizhi Du
    View author publications

    Search author on:PubMed Google Scholar

  5. Vivian Poulin
    View author publications

    Search author on:PubMed Google Scholar

  6. Yuhsin Tsai
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Guillermo Franco Abellán.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2112.13862

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abellán, G.F., Chacko, Z., Dev, A. et al. Improved cosmological constraints on the neutrino mass and lifetime. J. High Energ. Phys. 2022, 76 (2022). https://doi.org/10.1007/JHEP08(2022)076

Download citation

  • Received: 25 January 2022

  • Revised: 18 May 2022

  • Accepted: 24 June 2022

  • Published: 04 August 2022

  • Version of record: 04 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)076

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories BSM
  • Neutrino Interactions
  • Non-Standard Neutrino Properties

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature