Struct ultraviolet::mat::Mat4 [−][src]
Expand description
A 4x4 square matrix.
Useful for performing linear transformations (rotation, scaling) on 4d vectors, or for performing arbitrary transformations (linear + translation, projection, etc) on homogeneous 3d vectors.
Note that most constructors assume that the matrix will be used as a homogeneous 3d transformation matrix.
Fields
cols: [Vec4; 4]Implementations
impl Mat4[src]
impl Mat4[src]pub const fn new(col1: Vec4, col2: Vec4, col3: Vec4, col4: Vec4) -> Self[src]
pub fn identity() -> Self[src]
pub fn from_translation(trans: Vec3) -> Self[src]
pub fn from_translation(trans: Vec3) -> Self[src]Assumes homogeneous 3d coordinates.
pub fn from_scale(scale: f32) -> Self[src]
pub fn from_scale(scale: f32) -> Self[src]Assumes homogeneous 3d coordinates.
pub fn from_nonuniform_scale(scale: Vec3) -> Self[src]
pub fn from_nonuniform_scale(scale: Vec3) -> Self[src]Assumes homogeneous 3d coordinates.
pub fn from_scale_4d(scale: f32) -> Self[src]
pub fn from_scale_4d(scale: f32) -> Self[src]Full 4d diagonal matrix.
pub fn from_nonuniform_scale_4d(scale: Vec4) -> Self[src]
pub fn from_nonuniform_scale_4d(scale: Vec4) -> Self[src]Full 4d nonuniform scaling matrix.
pub fn from_euler_angles(roll: f32, pitch: f32, yaw: f32) -> Self[src]
pub fn from_euler_angles(roll: f32, pitch: f32, yaw: f32) -> Self[src]Angles are applied in the order roll -> pitch -> yaw
- Roll is rotation inside the xy plane (“around the z axis”)
- Pitch is rotation inside the yz plane (“around the x axis”)
- Yaw is rotation inside the xz plane (“around the y axis”)
Assumes homogeneous 3d coordinates.
Important: This function assumes a right-handed, y-up coordinate space where:
- +X axis points right
- +Y axis points up
- +Z axis points towards the viewer (i.e. out of the screen)
This means that you may see unexpected behavior when used with OpenGL or DirectX
as they use a different coordinate system. You should use the appropriate
projection matrix in projection module to fit your use case to remedy this.
pub fn from_rotation_x(angle: f32) -> Self[src]
pub fn from_rotation_x(angle: f32) -> Self[src]Create a new rotation matrix from a rotation “around the x axis”. This is here as a convenience function for users coming from other libraries; it is more proper to think of this as a rotation in the yz plane.
Assumes homogeneous 3d coordinates.
Important: This function assumes a right-handed, y-up coordinate space where:
- +X axis points right
- +Y axis points up
- +Z axis points towards the viewer (i.e. out of the screen)
This means that you may see unexpected behavior when used with OpenGL or DirectX
as they use a different coordinate system. You should use the appropriate
projection matrix in projection module to fit your use case to remedy this.
pub fn from_rotation_y(angle: f32) -> Self[src]
pub fn from_rotation_y(angle: f32) -> Self[src]Create a new rotation matrix from a rotation “around the y axis”. This is here as a convenience function for users coming from other libraries; it is more proper to think of this as a rotation in the xz plane.
Assumes homogeneous 3d coordinates.
Important: This function assumes a right-handed, y-up coordinate space where:
- +X axis points right
- +Y axis points up
- +Z axis points towards the viewer (i.e. out of the screen)
This means that you may see unexpected behavior when used with OpenGL or DirectX
as they use a different coordinate system. You should use the appropriate
projection matrix in projection module to fit your use case to remedy this.
pub fn from_rotation_z(angle: f32) -> Self[src]
pub fn from_rotation_z(angle: f32) -> Self[src]Create a new rotation matrix from a rotation “around the z axis”. This is here as a convenience function for users coming from other libraries; it is more proper to think of this as a rotation in the xy plane.
Assumes homogeneous 3d coordinates.
Important: This function assumes a right-handed, y-up coordinate space where:
- +X axis points right
- +Y axis points up
- +Z axis points towards the viewer (i.e. out of the screen)
This means that you may see unexpected behavior when used with OpenGL or DirectX
as they use a different coordinate system. You should use the appropriate
projection matrix in projection module to fit your use case to remedy this.
pub fn from_rotation_around(axis: Vec4, angle: f32) -> Self[src]
pub fn from_rotation_around(axis: Vec4, angle: f32) -> Self[src]Create a new rotation matrix from a rotation around the given axis. The axis will be interpreted as a 3d vector. This is here as a convenience function for users coming from other libraries.
Important: This function assumes a right-handed, y-up coordinate space where:
- +X axis points right
- +Y axis points up
- +Z axis points towards the viewer (i.e. out of the screen)
This means that you may see unexpected behavior when used with OpenGL or DirectX
as they use a different coordinate system. You should use the appropriate
projection matrix in projection module to fit your use case to remedy this.
pub fn from_angle_plane(angle: f32, plane: Bivec3) -> Self[src]
pub fn from_angle_plane(angle: f32, plane: Bivec3) -> Self[src]Construct a rotation matrix given a bivector which defines a plane and rotation orientation, and a rotation angle.
plane must be normalized!
This is the equivalent of an axis-angle rotation.
Assumes homogeneous 3d coordinates.
pub fn translated(&self, translation: &Vec3) -> Self[src]
pub fn translated(&self, translation: &Vec3) -> Self[src]Assumes homogeneous 3d coordinates.
pub fn look_at(eye: Vec3, at: Vec3, up: Vec3) -> Self[src]
pub fn look_at(eye: Vec3, at: Vec3, up: Vec3) -> Self[src]Constructs a ‘look-at’ matrix from an eye position, a focus position to look towards, and a vector that defines the ‘up’ direction.
This function assumes a right-handed, y-up coordinate space.
pub fn look_at_lh(eye: Vec3, at: Vec3, up: Vec3) -> Self[src]
pub fn look_at_lh(eye: Vec3, at: Vec3, up: Vec3) -> Self[src]Constructs a ‘look-at’ matrix from an eye position, a focus position to look towards, and a vector that defines the ‘up’ direction.
This function assumes a left-handed, y-up coordinate space.
pub fn transpose(&mut self)[src]
pub fn transposed(&self) -> Self[src]
pub fn inverse(&mut self)[src]
pub fn inverse(&mut self)[src]If this matrix is not currently invertable, this function will return an invalid inverse. This status is not checked by the library.
pub fn determinant(&self) -> f32[src]
pub fn adjugate(&self) -> Self[src]
pub fn adjugate(&self) -> Self[src]The adjugate of this matrix, i.e. the transpose of the cofactor matrix.
This is equivalent to the inverse but without dividing by the determinant of the matrix, which can be useful in some contexts for better performance.
One such case is when this matrix is interpreted as a a homogeneous transformation matrix, in which case uniform scaling will not affect the resulting projected 3d version of transformed points or vectors.
pub fn inversed(&self) -> Self[src]
pub fn inversed(&self) -> Self[src]If this matrix is not currently invertable, this function will return an invalid inverse. This status is not checked by the library.
pub fn transform_vec3(&self, vec: Vec3) -> Vec3[src]
pub fn transform_vec3(&self, vec: Vec3) -> Vec3[src]Transform a Vec3 by self, interpreting it as a vector.
pub fn transform_point3(&self, point: Vec3) -> Vec3[src]
pub fn transform_point3(&self, point: Vec3) -> Vec3[src]Transform a Vec3 by self, interpreting it as a point.
pub fn extract_translation(&self) -> Vec3[src]
pub fn extract_translation(&self) -> Vec3[src]If self represents an affine transformation, return its translation components.
Otherwise, the returned value has undefined properties.
pub fn extract_rotation(&self) -> Rotor3[src]
pub fn extract_rotation(&self) -> Rotor3[src]If the 3x3 left upper block of self is a rotation, return the corresponding
rotor. Otherwise, the returned value is a Rotor3 with undefined properties.
pub fn into_isometry(&self) -> Isometry3[src]
pub fn into_isometry(&self) -> Isometry3[src]If self represents an Isometry3 (i.e. self is a product of the from T * R where
T is a translation and R a rotation), return the isometry
If self does not represent an isometry, the returned value has undefined
properties.
pub fn truncate(&self) -> Mat3[src]
pub fn truncate(&self) -> Mat3[src]Truncate self to a matrix consisting of the 3x3 left upper block.
If you need a rotation, consider using Self::extract_rotation() instead.
pub fn layout() -> Layout[src]
pub fn as_array(&self) -> &[f32; 16][src]
pub fn as_component_array(&self) -> &[Vec4; 4][src]
pub fn as_slice(&self) -> &[f32][src]
pub fn as_component_slice(&self) -> &[Vec4][src]
pub fn as_byte_slice(&self) -> &[u8][src]
pub fn as_mut_slice(&mut self) -> &mut [f32][src]
pub fn as_mut_component_slice(&mut self) -> &mut [Vec4][src]
pub fn as_mut_byte_slice(&mut self) -> &mut [u8][src]
pub const fn as_ptr(&self) -> *const f32[src]
pub const fn as_ptr(&self) -> *const f32[src]Returns a constant unsafe pointer to the underlying data in the underlying type. This function is safe because all types here are repr(C) and can be represented as their underlying type.
Safety
It is up to the caller to correctly use this pointer and its bounds.
pub fn as_mut_ptr(&mut self) -> *mut f32[src]
pub fn as_mut_ptr(&mut self) -> *mut f32[src]Returns a mutable unsafe pointer to the underlying data in the underlying type. This function is safe because all types here are repr(C) and can be represented as their underlying type.
Safety
It is up to the caller to correctly use this pointer and its bounds.
Trait Implementations
impl AddAssign<Mat4> for Mat4[src]
impl AddAssign<Mat4> for Mat4[src]fn add_assign(&mut self, rhs: Mat4)[src]
fn add_assign(&mut self, rhs: Mat4)[src]Performs the += operation. Read more
impl<'de> Deserialize<'de> for Mat4[src]
impl<'de> Deserialize<'de> for Mat4[src]fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where
D: Deserializer<'de>, [src]
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where
D: Deserializer<'de>, [src]Deserialize this value from the given Serde deserializer. Read more
impl From<ColumnMatrix4<f32>> for Mat4[src]
impl From<ColumnMatrix4<f32>> for Mat4[src]fn from(v: ColumnMatrix4<f32>) -> Self[src]
fn from(v: ColumnMatrix4<f32>) -> Self[src]Performs the conversion.
impl Copy for Mat4[src]
impl Pod for Mat4[src]
impl StructuralPartialEq for Mat4[src]
Auto Trait Implementations
impl RefUnwindSafe for Mat4
impl Send for Mat4
impl Sync for Mat4
impl Unpin for Mat4
impl UnwindSafe for Mat4
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]pub fn borrow_mut(&mut self) -> &mut T[src]
pub fn borrow_mut(&mut self) -> &mut T[src]Mutably borrows from an owned value. Read more
impl<T> ToOwned for T where
T: Clone, [src]
impl<T> ToOwned for T where
T: Clone, [src]type Owned = T
type Owned = TThe resulting type after obtaining ownership.
pub fn to_owned(&self) -> T[src]
pub fn to_owned(&self) -> T[src]Creates owned data from borrowed data, usually by cloning. Read more
pub fn clone_into(&self, target: &mut T)[src]
pub fn clone_into(&self, target: &mut T)[src]🔬 This is a nightly-only experimental API. (toowned_clone_into)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<T> DeserializeOwned for T where
T: for<'de> Deserialize<'de>, [src]
T: for<'de> Deserialize<'de>,