[go: up one dir, main page]

Continuous

Trait Continuous 

Source
pub trait Continuous<K, T> {
    // Required methods
    fn pdf(&self, x: K) -> T;
    fn ln_pdf(&self, x: K) -> T;
}
Expand description

The Continuous trait provides an interface for interacting with continuous statistical distributions

§Remarks

All methods provided by the Continuous trait are unchecked, meaning they can panic if in an invalid state or encountering invalid input depending on the implementing distribution.

Required Methods§

Source

fn pdf(&self, x: K) -> T

Returns the probability density function calculated at x for a given distribution. May panic depending on the implementor.

§Examples
use statrs::distribution::{Continuous, Uniform};

let n = Uniform::new(0.0, 1.0).unwrap();
assert_eq!(1.0, n.pdf(0.5));
Source

fn ln_pdf(&self, x: K) -> T

Returns the log of the probability density function calculated at x for a given distribution. May panic depending on the implementor.

§Examples
use statrs::distribution::{Continuous, Uniform};

let n = Uniform::new(0.0, 1.0).unwrap();
assert_eq!(0.0, n.ln_pdf(0.5));

Implementors§

Source§

impl Continuous<f64, f64> for Beta

Source§

impl Continuous<f64, f64> for Cauchy

Source§

impl Continuous<f64, f64> for Chi

Source§

impl Continuous<f64, f64> for ChiSquared

Source§

impl Continuous<f64, f64> for Erlang

Source§

impl Continuous<f64, f64> for Exp

Source§

impl Continuous<f64, f64> for FisherSnedecor

Source§

impl Continuous<f64, f64> for Gamma

Source§

impl Continuous<f64, f64> for Gumbel

Source§

impl Continuous<f64, f64> for InverseGamma

Source§

impl Continuous<f64, f64> for Laplace

Source§

impl Continuous<f64, f64> for LogNormal

Source§

impl Continuous<f64, f64> for Normal

Source§

impl Continuous<f64, f64> for Pareto

Source§

impl Continuous<f64, f64> for StudentsT

Source§

impl Continuous<f64, f64> for Triangular

Source§

impl Continuous<f64, f64> for Uniform

Source§

impl Continuous<f64, f64> for Weibull

Source§

impl<D> Continuous<&Matrix<f64, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<f64>>, f64> for Dirichlet<D>
where D: Dim, DefaultAllocator: Allocator<D> + Allocator<D, D> + Allocator<Const<1>, D>,

Available on crate feature nalgebra only.
Source§

impl<D> Continuous<&Matrix<f64, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<f64>>, f64> for MultivariateNormal<D>
where D: Dim, DefaultAllocator: Allocator<D> + Allocator<D, D>,

Available on crate feature nalgebra only.
Source§

impl<D> Continuous<&Matrix<f64, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<f64>>, f64> for MultivariateStudent<D>
where D: Dim + DimMin<D, Output = D>, DefaultAllocator: Allocator<D> + Allocator<D, D>,

Available on crate feature nalgebra only.