use wide::f32x4;
use crate::util::*;
use crate::vec::*;
use std::ops::*;
macro_rules! bivec2s {
($(($bn:ident) => $t:ident),+) => {
$(
/// A bivector in 2d space.
///
/// Since in 2d there is only one plane in the whole of 2d space, a 2d bivector
/// has only one component.
///
/// Please see the module level documentation for more information on bivectors generally!
#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct $bn {
pub xy: $t
}
impl $bn {
#[inline]
pub fn new(xy: $t) -> Self {
Self {
xy
}
}
#[inline]
pub fn zero() -> Self {
Self::new($t::from(0.0))
}
#[inline]
pub fn unit_xy() -> Self {
Self::new($t::from(1.0))
}
#[inline]
pub fn mag_sq(&self) -> $t {
self.xy * self.xy
}
#[inline]
pub fn mag(&self) -> $t {
self.mag_sq().sqrt()
}
#[inline]
pub fn normalize(&mut self) {
let mag = self.mag();
self.xy /= mag;
}
#[inline]
pub fn normalized(&self) -> Self {
let mut r = self.clone();
r.normalize();
r
}
#[inline]
pub fn layout() -> alloc::alloc::Layout {
alloc::alloc::Layout::from_size_align(std::mem::size_of::<Self>(), std::mem::align_of::<$t>()).unwrap()
}
#[inline]
pub fn as_slice(&self) -> &[$t] {
unsafe {
std::slice::from_raw_parts(self as *const $bn as *const $t, 1)
}
}
#[inline]
pub fn as_byte_slice(&self) -> &[u8] {
unsafe {
std::slice::from_raw_parts(self as *const $bn as *const u8, std::mem::size_of::<$t>())
}
}
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [$t] {
unsafe {
std::slice::from_raw_parts_mut(self as *mut $bn as *mut $t, 1)
}
}
#[inline]
pub fn as_mut_byte_slice(&mut self) -> &mut [u8] {
unsafe {
std::slice::from_raw_parts_mut(self as *mut $bn as *mut u8, std::mem::size_of::<$t>())
}
}
#[inline]
pub fn as_ptr(&self) -> *const $t {
self as *const $bn as *const $t
}
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut $t {
self as *mut $bn as *mut $t
}
}
impl EqualsEps for $bn {
fn eq_eps(self, other: Self) -> bool {
self.xy.eq_eps(other.xy)
}
}
impl Add for $bn {
type Output = Self;
#[inline]
fn add(mut self, rhs: $bn) -> Self {
self += rhs;
self
}
}
impl AddAssign for $bn {
#[inline]
fn add_assign(&mut self, rhs: $bn) {
self.xy += rhs.xy;
}
}
impl Sub for $bn {
type Output = Self;
#[inline]
fn sub(mut self, rhs: $bn) -> Self {
self -= rhs;
self
}
}
impl SubAssign for $bn {
#[inline]
fn sub_assign(&mut self, rhs: $bn) {
self.xy -= rhs.xy;
}
}
impl Mul for $bn {
type Output = Self;
#[inline]
fn mul(mut self, rhs: $bn) -> Self {
self *= rhs;
self
}
}
impl Mul<$bn> for $t {
type Output = $bn;
#[inline]
fn mul(self, mut rhs: $bn) -> $bn {
rhs *= self;
rhs
}
}
impl Mul<$t> for $bn {
type Output = Self;
#[inline]
fn mul(mut self, rhs: $t) -> Self {
self *= rhs;
self
}
}
impl MulAssign for $bn {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.xy *= rhs.xy;
}
}
impl MulAssign<$t> for $bn {
#[inline]
fn mul_assign(&mut self, rhs: $t) {
self.xy *= rhs;
}
}
impl Div for $bn {
type Output = Self;
#[inline]
fn div(mut self, rhs: $bn) -> Self {
self /= rhs;
self
}
}
impl Div<$t> for $bn {
type Output = $bn;
#[inline]
fn div(mut self, rhs: $t) -> $bn {
self.xy /= rhs;
self
}
}
impl DivAssign for $bn {
#[inline]
fn div_assign(&mut self, rhs: $bn) {
self.xy /= rhs.xy;
}
}
impl DivAssign<$t> for $bn {
#[inline]
fn div_assign(&mut self, rhs: $t) {
self.xy /= rhs;
}
}
impl Neg for $bn {
type Output = Self;
#[inline]
fn neg(mut self) -> Self {
self.xy = -self.xy;
self
}
}
)+
}
}
bivec2s!((Bivec2) => f32, (WBivec2) => f32x4);
macro_rules! bivec3s {
($($bn:ident => ($vt:ident, $t:ident)),+) => {
$(
/// A bivector in 3d space.
///
/// In 3d, a bivector has 3 components, each one representing the signed *projected area* of the bivector
/// onto one of the 3 *basis bivectors*, which can be thought of as corresponding to each of hte
/// three basis planes. This is analogous to the components of a 3d vector, which correspond to the
/// *projected length* of the vector onto the three basis *vectors. Since in 3d, there are three
/// components for both vectors and bivectors, 3d bivectors have been historically confused with
/// 3d vectors quite a lot.
///
/// Please see the module level documentation for more information on bivectors generally!
#[derive(Clone, Copy, Debug, Default)]
#[repr(C)]
pub struct $bn {
pub xy: $t,
pub xz: $t,
pub yz: $t,
}
impl EqualsEps for $bn {
fn eq_eps(self, other: Self) -> bool {
self.xy.eq_eps(other.xy) && self.xz.eq_eps(other.xz) && self.yz.eq_eps(other.yz)
}
}
impl $bn {
#[inline]
pub fn new(xy: $t, xz: $t, yz: $t) -> Self {
Self {
xy, xz, yz
}
}
#[inline]
pub fn zero() -> Self {
Self::new($t::from(0.0), $t::from(0.0), $t::from(0.0))
}
#[inline]
pub fn from_normalized_axis(v: $vt) -> Self {
Self::new(v.z, v.y, v.x)
}
#[inline]
pub fn unit_xy() -> Self {
Self::new($t::from(1.0), $t::from(0.0), $t::from(0.0))
}
#[inline]
pub fn unit_xz() -> Self {
Self::new($t::from(0.0), $t::from(1.0), $t::from(0.0))
}
#[inline]
pub fn unit_yz() -> Self {
Self::new($t::from(0.0), $t::from(0.0), $t::from(1.0))
}
#[inline]
pub fn mag_sq(&self) -> $t {
self.xy.mul_add(self.xy, self.xz.mul_add(self.xz, self.yz * self.yz))
}
#[inline]
pub fn mag(&self) -> $t {
self.mag_sq().sqrt()
}
#[inline]
pub fn normalize(&mut self) {
let mag = self.mag();
self.xy /= mag;
self.xz /= mag;
self.yz /= mag;
}
#[inline]
pub fn normalized(&self) -> Self {
let mut r = self.clone();
r.normalize();
r
}
#[inline]
pub fn layout() -> alloc::alloc::Layout {
alloc::alloc::Layout::from_size_align(std::mem::size_of::<Self>(), std::mem::align_of::<$t>()).unwrap()
}
#[inline]
pub fn as_slice(&self) -> &[$t] {
unsafe {
std::slice::from_raw_parts(self as *const $bn as *const $t, 3)
}
}
#[inline]
pub fn as_byte_slice(&self) -> &[u8] {
unsafe {
std::slice::from_raw_parts(self as *const $bn as *const u8, 3 * std::mem::size_of::<$t>())
}
}
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [$t] {
unsafe {
std::slice::from_raw_parts_mut(self as *mut $bn as *mut $t, 3)
}
}
#[inline]
pub fn as_mut_byte_slice(&mut self) -> &mut [u8] {
unsafe {
std::slice::from_raw_parts_mut(self as *mut $bn as *mut u8, 3 * std::mem::size_of::<$t>())
}
}
#[inline]
pub fn as_ptr(&self) -> *const $t {
self as *const $bn as *const $t
}
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut $t {
self as *mut $bn as *mut $t
}
}
impl Add for $bn {
type Output = Self;
#[inline]
fn add(mut self, rhs: $bn) -> Self {
self += rhs;
self
}
}
impl AddAssign for $bn {
#[inline]
fn add_assign(&mut self, rhs: $bn) {
self.xy += rhs.xy;
self.xz += rhs.xz;
self.yz += rhs.yz;
}
}
impl Sub for $bn {
type Output = Self;
#[inline]
fn sub(mut self, rhs: $bn) -> Self {
self -= rhs;
self
}
}
impl SubAssign for $bn {
#[inline]
fn sub_assign(&mut self, rhs: $bn) {
self.xy -= rhs.xy;
self.xz -= rhs.xz;
self.yz -= rhs.yz;
}
}
impl Mul for $bn {
type Output = Self;
#[inline]
fn mul(mut self, rhs: $bn) -> Self {
self *= rhs;
self
}
}
impl Mul<$bn> for $t {
type Output = $bn;
#[inline]
fn mul(self, mut rhs: $bn) -> $bn {
rhs *= self;
rhs
}
}
impl Mul<$t> for $bn {
type Output = Self;
#[inline]
fn mul(mut self, rhs: $t) -> Self {
self *= rhs;
self
}
}
impl MulAssign for $bn {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.xy *= rhs.xy;
self.xz *= rhs.xz;
self.yz *= rhs.yz;
}
}
impl MulAssign<$t> for $bn {
#[inline]
fn mul_assign(&mut self, rhs: $t) {
self.xy *= rhs;
self.xz *= rhs;
self.yz *= rhs;
}
}
impl Div for $bn {
type Output = Self;
#[inline]
fn div(mut self, rhs: $bn) -> Self {
self /= rhs;
self
}
}
impl Div<$t> for $bn {
type Output = $bn;
#[inline]
fn div(mut self, rhs: $t) -> $bn {
self.xy /= rhs;
self
}
}
impl DivAssign for $bn {
#[inline]
fn div_assign(&mut self, rhs: $bn) {
self.xy /= rhs.xy;
self.xz /= rhs.xz;
self.yz /= rhs.yz;
}
}
impl DivAssign<$t> for $bn {
#[inline]
fn div_assign(&mut self, rhs: $t) {
self.xy /= rhs;
self.xz /= rhs;
self.yz /= rhs;
}
}
impl Neg for $bn {
type Output = Self;
#[inline]
fn neg(mut self) -> Self {
self.xy = -self.xy;
self.xz = -self.xz;
self.yz = -self.yz;
self
}
}
)+
}
}
bivec3s!(Bivec3 => (Vec3, f32), WBivec3 => (Wec3, f32x4));