#![allow(missing_docs)]
#![allow(deprecated)]
use std::cmp::Ordering::{self, Equal, Greater, Less};
use std::mem;
#[cfg(test)]
mod tests;
fn local_cmp(x: f64, y: f64) -> Ordering {
if y.is_nan() {
Less
} else if x.is_nan() {
Greater
} else if x < y {
Less
} else if x == y {
Equal
} else {
Greater
}
}
fn local_sort(v: &mut [f64]) {
v.sort_by(|x: &f64, y: &f64| local_cmp(*x, *y));
}
pub trait Stats {
fn sum(&self) -> f64;
fn min(&self) -> f64;
fn max(&self) -> f64;
fn mean(&self) -> f64;
fn median(&self) -> f64;
fn var(&self) -> f64;
fn std_dev(&self) -> f64;
fn std_dev_pct(&self) -> f64;
fn median_abs_dev(&self) -> f64;
fn median_abs_dev_pct(&self) -> f64;
fn percentile(&self, pct: f64) -> f64;
fn quartiles(&self) -> (f64, f64, f64);
fn iqr(&self) -> f64;
}
#[derive(Debug, Clone, PartialEq, Copy)]
#[allow(missing_docs)]
pub struct Summary {
pub sum: f64,
pub min: f64,
pub max: f64,
pub mean: f64,
pub median: f64,
pub var: f64,
pub std_dev: f64,
pub std_dev_pct: f64,
pub median_abs_dev: f64,
pub median_abs_dev_pct: f64,
pub quartiles: (f64, f64, f64),
pub iqr: f64,
}
impl Summary {
pub fn new(samples: &[f64]) -> Summary {
Summary {
sum: samples.sum(),
min: samples.min(),
max: samples.max(),
mean: samples.mean(),
median: samples.median(),
var: samples.var(),
std_dev: samples.std_dev(),
std_dev_pct: samples.std_dev_pct(),
median_abs_dev: samples.median_abs_dev(),
median_abs_dev_pct: samples.median_abs_dev_pct(),
quartiles: samples.quartiles(),
iqr: samples.iqr(),
}
}
}
impl Stats for [f64] {
fn sum(&self) -> f64 {
let mut partials = vec![];
for &x in self {
let mut x = x;
let mut j = 0;
for i in 0..partials.len() {
let mut y: f64 = partials[i];
if x.abs() < y.abs() {
mem::swap(&mut x, &mut y);
}
let hi = x + y;
let lo = y - (hi - x);
if lo != 0.0 {
partials[j] = lo;
j += 1;
}
x = hi;
}
if j >= partials.len() {
partials.push(x);
} else {
partials[j] = x;
partials.truncate(j + 1);
}
}
let zero: f64 = 0.0;
partials.iter().fold(zero, |p, q| p + *q)
}
fn min(&self) -> f64 {
assert!(!self.is_empty());
self.iter().fold(self[0], |p, q| p.min(*q))
}
fn max(&self) -> f64 {
assert!(!self.is_empty());
self.iter().fold(self[0], |p, q| p.max(*q))
}
fn mean(&self) -> f64 {
assert!(!self.is_empty());
self.sum() / (self.len() as f64)
}
fn median(&self) -> f64 {
self.percentile(50 as f64)
}
fn var(&self) -> f64 {
if self.len() < 2 {
0.0
} else {
let mean = self.mean();
let mut v: f64 = 0.0;
for s in self {
let x = *s - mean;
v = v + x * x;
}
let denom = (self.len() - 1) as f64;
v / denom
}
}
fn std_dev(&self) -> f64 {
self.var().sqrt()
}
fn std_dev_pct(&self) -> f64 {
let hundred = 100 as f64;
(self.std_dev() / self.mean()) * hundred
}
fn median_abs_dev(&self) -> f64 {
let med = self.median();
let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect();
let number = 1.4826;
abs_devs.median() * number
}
fn median_abs_dev_pct(&self) -> f64 {
let hundred = 100 as f64;
(self.median_abs_dev() / self.median()) * hundred
}
fn percentile(&self, pct: f64) -> f64 {
let mut tmp = self.to_vec();
local_sort(&mut tmp);
percentile_of_sorted(&tmp, pct)
}
fn quartiles(&self) -> (f64, f64, f64) {
let mut tmp = self.to_vec();
local_sort(&mut tmp);
let first = 25f64;
let a = percentile_of_sorted(&tmp, first);
let second = 50f64;
let b = percentile_of_sorted(&tmp, second);
let third = 75f64;
let c = percentile_of_sorted(&tmp, third);
(a, b, c)
}
fn iqr(&self) -> f64 {
let (a, _, c) = self.quartiles();
c - a
}
}
fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 {
assert!(!sorted_samples.is_empty());
if sorted_samples.len() == 1 {
return sorted_samples[0];
}
let zero: f64 = 0.0;
assert!(zero <= pct);
let hundred = 100f64;
assert!(pct <= hundred);
if pct == hundred {
return sorted_samples[sorted_samples.len() - 1];
}
let length = (sorted_samples.len() - 1) as f64;
let rank = (pct / hundred) * length;
let lrank = rank.floor();
let d = rank - lrank;
let n = lrank as usize;
let lo = sorted_samples[n];
let hi = sorted_samples[n + 1];
lo + (hi - lo) * d
}
pub fn winsorize(samples: &mut [f64], pct: f64) {
let mut tmp = samples.to_vec();
local_sort(&mut tmp);
let lo = percentile_of_sorted(&tmp, pct);
let hundred = 100 as f64;
let hi = percentile_of_sorted(&tmp, hundred - pct);
for samp in samples {
if *samp > hi {
*samp = hi
} else if *samp < lo {
*samp = lo
}
}
}