[go: up one dir, main page]

typenum 1.3.1

Typenum is a Rust library for type-level numbers evaluated at compile time. It currently supports bits, unsigned integers, and signed integers.
Documentation
// !
// *Ignore me!** This module is for things that are conceptually private but that must be made public for
// typenum to work correctly.
//
// Unless you are working on typenum itself, **there is no need to view anything here**.
//
// Certainly don't implement any of the traits here for anything.
//
//
// Just look away.
//
//
// Loooooooooooooooooooooooooooooooooook awaaaaaaaaaaaayyyyyyyyyyyyyyyyyyyyyyyyyyyyy...
//
//
// If you do manage to find something of use in here, please let me know. If you can make a
// compelling case, it may be moved out of __private.
//
// Note: Aliases for private type operators will all be named simply that operator followed
// by an abbreviated name of its associated type.
//

#![doc(hidden)]

use core::marker::PhantomData;

// use ::{Sub};
use bit::{Bit, B1, B0};
use uint::{Unsigned, UInt, UTerm};

/// Gives the size of a type number in bits as a `UInt`
pub trait SizeOf {
    type Output;
}
pub type SizeOfOut<A> = <A as SizeOf>::Output;

/// Convenience trait. Calls Invert -> TrimTrailingZeros -> Invert
pub trait Trim {
    type Output;
}
pub type TrimOut<A> = <A as Trim>::Output;

/// Gets rid of all zeros until it hits a one.

// ONLY IMPLEMENT FOR INVERTED NUMBERS!
pub trait TrimTrailingZeros {
    type Output;
}
pub type TrimTrailingZerosOut<A> = <A as TrimTrailingZeros>::Output;

/// Converts between standard numbers and inverted ones that have the most significant
/// digit on the outside.
pub trait Invert {
    type Output;
}
pub type InvertOut<A> = <A as Invert>::Output;

/// Doubly private! Called by invert to make the magic happen once its done the first step.
/// The Rhs is what we've got so far.
pub trait PrivateInvert<Rhs> {
    type Output;
}
pub type PrivateInvertOut<A, Rhs> = <A as PrivateInvert<Rhs>>::Output;

pub trait PrivateSizeOf {
    type Output;
}
pub type PrivateSizeOfOut<A> = <A as PrivateSizeOf>::Output;

/// Terminating character for `InvertedUInt`s
pub enum InvertedUTerm {}

/// Inverted UInt (has most significant digit on the outside)
pub struct InvertedUInt<IU: InvertedUnsigned, B: Bit> {
    _marker: PhantomData<(IU, B)>,
}

/// Does the real anding for `UInt`s; `And` just calls this and then `Trim`.
pub trait PrivateAnd<Rhs = Self> {
    type Output;
}
pub type PrivateAndOut<A, Rhs> = <A as PrivateAnd<Rhs>>::Output;

/// Does the real xoring for `UInt`s; `Xor` just calls this and then `Trim`.
pub trait PrivateXor<Rhs = Self> {
    type Output;
}
pub type PrivateXorOut<A, Rhs> = <A as PrivateXor<Rhs>>::Output;

/// Does the real subtraction for `UInt`s; `Sub` just calls this and then `Trim`.
pub trait PrivateSub<Rhs = Self> {
    type Output;
}
pub type PrivateSubOut<A, Rhs> = <A as PrivateSub<Rhs>>::Output;

/// Used for addition of signed integers; C = P.cmp(N)
/// Assumes P = Self is positive and N is negative
/// where P and N are both passed as unsigned integers
pub trait PrivateIntegerAdd<C, N> {
    type Output;
}
pub type PrivateIntegerAddOut<P, C, N> =
    <P as PrivateIntegerAdd<C, N>>::Output;

pub trait PrivatePow<Y, N> {
    type Output;
}
pub type PrivatePowOut<A, Y, N> = <A as PrivatePow<Y, N>>::Output;

pub trait PrivateDiv<C, I, Q, Divisor> {
    type Quotient;
    type Remainder;
}
pub type PrivateDivQuot<R, C, I, Q, Divisor> =
    <R as PrivateDiv<C, I, Q, Divisor>>::Quotient;
pub type PrivateDivRem<R, C, I, Q, Divisor> =
    <R as PrivateDiv<C, I, Q, Divisor>>::Remainder;

pub trait PrivateDivFirstStep<C, Divisor> {
    type Quotient;
    type Remainder;
}
pub type PrivateDivFirstStepQuot<R, C, Divisor> =
    <R as PrivateDivFirstStep<C, Divisor>>::Quotient;
pub type PrivateDivFirstStepRem<R, C, Divisor> =
    <R as PrivateDivFirstStep<C, Divisor>>::Remainder;

pub trait PrivateDivInt<C, Divisor> {
    type Output;
}
pub type PrivateDivIntOut<A, C, Divisor> =
    <A as PrivateDivInt<C, Divisor>>::Output;

pub trait PrivateRem<URem, Divisor> {
    type Output;
}
pub type PrivateRemOut<A, URem, Divisor> =
    <A as PrivateRem<URem, Divisor>>::Output;

/// Performs Shl on Lhs so that SizeOf(Lhs) = SizeOf(Rhs)
/// Fails if SizeOf(Lhs) > SizeOf(Rhs)
pub trait ShiftDiff<Rhs> {
    type Output;
}
pub type ShiftDiffOut<A, Rhs> = <A as ShiftDiff<Rhs>>::Output;

/// Gives SizeOf(Lhs) - SizeOf(Rhs)
pub trait BitDiff<Rhs> {
    type Output;
}
pub type BitDiffOut<A, Rhs> = <A as BitDiff<Rhs>>::Output;

/// Inverted unsigned numbers
pub trait InvertedUnsigned {
    fn to_u64() -> u64;
}

impl InvertedUnsigned for InvertedUTerm {
    fn to_u64() -> u64 {
        0
    }
}

impl<IU: InvertedUnsigned, B: Bit> InvertedUnsigned for InvertedUInt<IU, B> {
    fn to_u64() -> u64 {
        B::to_u8() as u64 | IU::to_u64() << 1
    }
}

impl Invert for UTerm {
    type Output = InvertedUTerm;
}

impl<U: Unsigned, B: Bit> Invert for UInt<U, B>
    where U: PrivateInvert<InvertedUInt<InvertedUTerm, B>>
{
    type Output = PrivateInvertOut<U, InvertedUInt<InvertedUTerm, B>>;
}


impl<IU: InvertedUnsigned> PrivateInvert<IU> for UTerm {
    type Output = IU;
}

impl<IU: InvertedUnsigned, U: Unsigned, B: Bit> PrivateInvert<IU> for UInt<U, B>
    where U: PrivateInvert<InvertedUInt<IU, B>>
{
    type Output = PrivateInvertOut<U, InvertedUInt<IU, B>>;
}

#[test]
fn test_inversion() {
    type Test4 = <::consts::U4 as Invert>::Output;
    type Test5 = <::consts::U5 as Invert>::Output;
    type Test12 = <::consts::U12 as Invert>::Output;
    type Test16 = <::consts::U16 as Invert>::Output;

    assert_eq!(1, <Test4 as InvertedUnsigned>::to_u64());
    assert_eq!(5, <Test5 as InvertedUnsigned>::to_u64());
    assert_eq!(3, <Test12 as InvertedUnsigned>::to_u64());
    assert_eq!(1, <Test16 as InvertedUnsigned>::to_u64());
}

impl Invert for InvertedUTerm {
    type Output = UTerm;
}

impl<IU: InvertedUnsigned, B: Bit> Invert for InvertedUInt<IU, B>
    where IU: PrivateInvert<UInt<UTerm, B>>
{
    type Output = <IU as PrivateInvert<UInt<UTerm, B>>>::Output;
}

impl<U: Unsigned> PrivateInvert<U> for InvertedUTerm {
    type Output = U;
}

impl<U: Unsigned, IU: InvertedUnsigned, B: Bit> PrivateInvert<U> for InvertedUInt<IU, B>
    where IU: PrivateInvert<UInt<U, B>>
{
    type Output = <IU as PrivateInvert<UInt<U, B>>>::Output;
}

#[test]
fn test_double_inversion() {
    type Test4 = <<::consts::U4 as Invert>::Output as Invert>::Output;
    type Test5 = <<::consts::U5 as Invert>::Output as Invert>::Output;
    type Test12 = <<::consts::U12 as Invert>::Output as Invert>::Output;
    type Test16 = <<::consts::U16 as Invert>::Output as Invert>::Output;

    assert_eq!(4, <Test4 as Unsigned>::to_u64());
    assert_eq!(5, <Test5 as Unsigned>::to_u64());
    assert_eq!(12, <Test12 as Unsigned>::to_u64());
    assert_eq!(16, <Test16 as Unsigned>::to_u64());
}

impl TrimTrailingZeros for InvertedUTerm {
    type Output = InvertedUTerm;
}

impl<IU: InvertedUnsigned> TrimTrailingZeros for InvertedUInt<IU, B1> {
    type Output = Self;
}

impl<IU: InvertedUnsigned> TrimTrailingZeros for InvertedUInt<IU, B0> where IU: TrimTrailingZeros
{
    type Output = <IU as TrimTrailingZeros>::Output;
}

impl<U: Unsigned> Trim for U
    where U: Invert,
          <U as Invert>::Output: TrimTrailingZeros,
          <<U as Invert>::Output as TrimTrailingZeros>::Output: Invert
{
    type Output = <<<U as Invert>::Output as TrimTrailingZeros>::Output as Invert>::Output;
}

// Note: Trimming is tested when we do subtraction.

pub trait PrivateCmp<Rhs, SoFar> {
    type Output;
}
pub type PrivateCmpOut<A, Rhs, SoFar> = <A as PrivateCmp<Rhs, SoFar>>::Output;