use crate::dataset::deserialize_data;
use crate::dataset::Dataset;
pub fn load_dataset() -> Dataset<f32, u32> {
let (x, y, num_samples, num_features): (Vec<f32>, Vec<u32>, usize, usize) =
match deserialize_data(std::include_bytes!("iris.xy")) {
Err(why) => panic!("Can't deserialize iris.xy. {why}"),
Ok((x, y, num_samples, num_features)) => (
x,
y.into_iter().map(|x| x as u32).collect(),
num_samples,
num_features,
),
};
Dataset {
data: x,
target: y,
num_samples,
num_features,
feature_names: [
"sepal length (cm)",
"sepal width (cm)",
"petal length (cm)",
"petal width (cm)",
]
.iter()
.map(|s| s.to_string())
.collect(),
target_names: ["setosa", "versicolor", "virginica"]
.iter()
.map(|s| s.to_string())
.collect(),
description: "Iris dataset: https://archive.ics.uci.edu/ml/datasets/iris".to_string(),
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
)]
#[test]
fn iris_dataset() {
let dataset = load_dataset();
assert_eq!(dataset.data.len(), 50 * 3 * 4);
assert_eq!(dataset.target.len(), 50 * 3);
assert_eq!(dataset.num_features, 4);
assert_eq!(dataset.num_samples, 50 * 3);
}
}