[go: up one dir, main page]

rsa 0.10.0-rc.7

Pure Rust RSA implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! Generic RSA implementation

use core::cmp::Ordering;

use crypto_bigint::modular::{BoxedMontyForm, BoxedMontyParams};
use crypto_bigint::{BoxedUint, Gcd, NonZero, Odd, RandomMod, Resize};
use rand_core::TryCryptoRng;
use zeroize::Zeroize;

use crate::errors::{Error, Result};
use crate::traits::keys::{PrivateKeyParts, PublicKeyParts};

/// ⚠️ Raw RSA encryption of m with the public key. No padding is performed.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_encrypt<K: PublicKeyParts>(key: &K, m: &BoxedUint) -> Result<BoxedUint> {
    let res = pow_mod_params(m, key.e(), key.n_params());
    Ok(res)
}

/// ⚠️ Performs raw RSA decryption with no padding or error checking.
///
/// Returns a plaintext `BoxedUint`. Performs RSA blinding if an `Rng` is passed.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_decrypt<R: TryCryptoRng + ?Sized>(
    rng: Option<&mut R>,
    priv_key: &impl PrivateKeyParts,
    c: &BoxedUint,
) -> Result<BoxedUint> {
    let n = priv_key.n();
    let d = priv_key.d();

    if c.bits_precision() != n.as_ref().bits_precision() {
        return Err(Error::Decryption);
    }

    if c >= n.as_ref() {
        return Err(Error::Decryption);
    }

    let mut ir = None;

    let n_params = priv_key.n_params();
    let bits = d.bits_precision();

    let c = if let Some(rng) = rng {
        let (blinded, unblinder) = blind(rng, priv_key, c, n_params)?;
        ir = Some(unblinder);
        blinded.try_resize(bits).ok_or(Error::Internal)?
    } else {
        c.try_resize(bits).ok_or(Error::Internal)?
    };

    let is_multiprime = priv_key.primes().len() > 2;

    let m = match (
        priv_key.dp(),
        priv_key.dq(),
        priv_key.qinv(),
        priv_key.p_params(),
        priv_key.q_params(),
    ) {
        (Some(dp), Some(dq), Some(qinv), Some(p_params), Some(q_params)) if !is_multiprime => {
            // We have the precalculated values needed for the CRT.

            let p = &priv_key.primes()[0];
            let q = &priv_key.primes()[1];

            // precomputed: dP = (1/e) mod (p-1) = d mod (p-1)
            // precomputed: dQ = (1/e) mod (q-1) = d mod (q-1)

            // TODO: it may be faster to convert to and from Montgomery with prepared parameters
            // (modulo `p` and `q`) rather than calculating the remainder directly.

            // m1 = c^dP mod p
            let p_wide = p_params.modulus().resize_unchecked(c.bits_precision());
            let c_mod_dp = (&c % p_wide.as_nz_ref()).resize_unchecked(dp.bits_precision());
            let cp = BoxedMontyForm::new(c_mod_dp, p_params.clone());
            let mut m1 = cp.pow(dp);
            // m2 = c^dQ mod q
            let q_wide = q_params.modulus().resize_unchecked(c.bits_precision());
            let c_mod_dq = (&c % q_wide.as_nz_ref()).resize_unchecked(dq.bits_precision());
            let cq = BoxedMontyForm::new(c_mod_dq, q_params.clone());
            let m2 = cq.pow(dq).retrieve();

            // Note that since `p` and `q` may have different `bits_precision`,
            // it may be different for `m1` and `m2` as well.

            // (m1 - m2) mod p = (m1 mod p) - (m2 mod p) mod p
            let m2_mod_p = match p_params.bits_precision().cmp(&q_params.bits_precision()) {
                Ordering::Less => {
                    let p_wide = NonZero::new(p.clone())
                        .expect("`p` is non-zero")
                        .resize_unchecked(q_params.bits_precision());
                    (&m2 % p_wide).resize_unchecked(p_params.bits_precision())
                }
                Ordering::Greater => (&m2).resize_unchecked(p_params.bits_precision()),
                Ordering::Equal => m2.clone(),
            };
            let m2r = BoxedMontyForm::new(m2_mod_p, p_params.clone());
            m1 -= &m2r;

            // precomputed: qInv = (1/q) mod p

            // h = qInv.(m1 - m2) mod p
            let h = (qinv * m1).retrieve();

            // m = m2 + h.q
            let m2 = m2.try_resize(n.bits_precision()).ok_or(Error::Internal)?;
            let hq = (h * q)
                .try_resize(n.bits_precision())
                .ok_or(Error::Internal)?;
            m2.wrapping_add(&hq)
        }
        _ => {
            // c^d (mod n)
            pow_mod_params(&c, d, n_params)
        }
    };

    match ir {
        Some(ref ir) => {
            // unblind
            let res = unblind(&m, ir, n_params);
            Ok(res)
        }
        None => Ok(m),
    }
}

/// ⚠️ Performs raw RSA decryption with no padding.
///
/// Returns a plaintext `BoxedUint`. Performs RSA blinding if an `Rng` is passed.  This will also
/// check for errors in the CRT computation.
///
/// `c` must have the same `bits_precision` as the RSA key modulus.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_decrypt_and_check<R: TryCryptoRng + ?Sized>(
    priv_key: &impl PrivateKeyParts,
    rng: Option<&mut R>,
    c: &BoxedUint,
) -> Result<BoxedUint> {
    let m = rsa_decrypt(rng, priv_key, c)?;

    // In order to defend against errors in the CRT computation, m^e is
    // calculated, which should match the original ciphertext.
    let check = rsa_encrypt(priv_key, &m)?;

    if c != &check {
        return Err(Error::Internal);
    }

    Ok(m)
}

/// Returns the blinded c, along with the unblinding factor.
fn blind<R: TryCryptoRng + ?Sized, K: PublicKeyParts>(
    rng: &mut R,
    key: &K,
    c: &BoxedUint,
    n_params: &BoxedMontyParams,
) -> Result<(BoxedUint, BoxedUint)> {
    // Blinding involves multiplying c by r^e.
    // Then the decryption operation performs (m^e * r^e)^d mod n
    // which equals mr mod n. The factor of r can then be removed
    // by multiplying by the multiplicative inverse of r.
    debug_assert_eq!(&key.n().clone().get(), n_params.modulus());
    let bits = key.n_bits_precision();

    let mut r: BoxedUint = BoxedUint::one_with_precision(bits);
    let mut ir: Option<BoxedUint> = None;
    while ir.is_none() {
        r = BoxedUint::try_random_mod(rng, key.n()).map_err(|_| Error::Rng)?;
        if r.is_zero().into() {
            r = BoxedUint::one_with_precision(bits);
        }

        // r^-1 (mod n)
        ir = r.invert_mod(key.n()).into();
    }

    let blinded = {
        // r^e (mod n)
        let mut rpowe = pow_mod_params(&r, key.e(), n_params);
        // c * r^e (mod n)
        let c = mul_mod_params(c, &rpowe, n_params);
        rpowe.zeroize();

        c
    };

    let ir = ir.expect("loop exited");
    debug_assert_eq!(blinded.bits_precision(), bits);
    debug_assert_eq!(ir.bits_precision(), bits);

    Ok((blinded, ir))
}

/// Given an m and unblinding factor, unblind the m.
fn unblind(m: &BoxedUint, unblinder: &BoxedUint, n_params: &BoxedMontyParams) -> BoxedUint {
    // m * r^-1 (mod n)
    debug_assert_eq!(
        m.bits_precision(),
        unblinder.bits_precision(),
        "invalid unblinder"
    );

    debug_assert_eq!(
        m.bits_precision(),
        n_params.bits_precision(),
        "invalid n_params"
    );

    mul_mod_params(m, unblinder, n_params)
}

/// Computes `base.pow_mod(exp, n)` with precomputed `n_params`.
fn pow_mod_params(base: &BoxedUint, exp: &BoxedUint, n_params: &BoxedMontyParams) -> BoxedUint {
    let base = reduce_vartime(base, n_params);
    base.pow(exp).retrieve()
}

fn reduce_vartime(n: &BoxedUint, p: &BoxedMontyParams) -> BoxedMontyForm {
    let modulus = p.modulus().as_nz_ref().clone();
    let n_reduced = n.rem_vartime(&modulus).resize_unchecked(p.bits_precision());
    BoxedMontyForm::new(n_reduced, p.clone())
}

/// Computes `lhs.mul_mod(rhs, n)` with precomputed `n_params`.
fn mul_mod_params(lhs: &BoxedUint, rhs: &BoxedUint, n_params: &BoxedMontyParams) -> BoxedUint {
    // TODO: nicer api in crypto-bigint?
    let lhs = BoxedMontyForm::new(lhs.clone(), n_params.clone());
    let rhs = BoxedMontyForm::new(rhs.clone(), n_params.clone());
    (lhs * rhs).retrieve()
}

/// The following (deterministic) algorithm also recovers the prime factors `p` and `q` of a modulus `n`, given the
/// public exponent `e` and private exponent `d` using the method described in
/// [NIST 800-56B Appendix C.2](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf).
pub fn recover_primes(
    n: &NonZero<BoxedUint>,
    e: &BoxedUint,
    d: &BoxedUint,
) -> Result<(BoxedUint, BoxedUint)> {
    // Check precondition

    // Note: because e is at most u64::MAX, it is already
    // known to be < 2**256
    if e <= &BoxedUint::from(2u64.pow(16)) {
        return Err(Error::InvalidArguments);
    }

    // 1. Let a = (de – 1) × GCD(n – 1, de – 1).
    let bits = d.bits_precision() * 2;
    let one = BoxedUint::one_with_precision(bits);
    let e = e.resize_unchecked(d.bits_precision());
    let d = d.resize_unchecked(d.bits_precision());
    let n = n.resize_unchecked(bits);

    let a1 = d * e - &one;
    let a2 = (n.as_ref() - &one).gcd(&a1);
    let a = a1 * a2;
    let n = n.resize_unchecked(a.bits_precision());

    // 2. Let m = floor(a /n) and r = a – m n, so that a = m n + r and 0 ≤ r < n.
    let m = &a / &n;
    let r = a - &m * n.as_ref();
    let n = n.get();

    // 3. Let b = ( (n – r)/(m + 1) ) + 1; if b is not an integer or b^2 ≤ 4n, then output an error indicator,
    //    and exit without further processing.
    let modulus_check = (&n - &r) % NonZero::new(&m + &one).expect("adding 1");
    if (!modulus_check.is_zero()).into() {
        return Err(Error::InvalidArguments);
    }
    let b = ((&n - &r) / NonZero::new(&m + &one).expect("adding one")) + one;

    let four = BoxedUint::from(4u32);
    let four_n = &n * four;
    let b_squared = b.square();

    if b_squared <= four_n {
        return Err(Error::InvalidArguments);
    }
    let b_squared_minus_four_n = b_squared - four_n;

    // 4. Let ϒ be the positive square root of b^2 – 4n; if ϒ is not an integer,
    //    then output an error indicator, and exit without further processing.
    let y = b_squared_minus_four_n.sqrt();

    let y_squared = y.square();
    let sqrt_is_whole_number = y_squared == b_squared_minus_four_n;
    if !sqrt_is_whole_number {
        return Err(Error::InvalidArguments);
    }

    let bits = core::cmp::max(b.bits_precision(), y.bits_precision());
    let two = NonZero::new(BoxedUint::from(2u64))
        .expect("2 is non zero")
        .resize_unchecked(bits);
    let p = (&b + &y) / &two;
    let q = (b - y) / two;

    Ok((p, q))
}

/// Compute the modulus of a key from its primes.
pub(crate) fn compute_modulus(primes: &[BoxedUint]) -> Odd<BoxedUint> {
    let mut primes = primes.iter();
    let mut out = primes.next().expect("must at least be one prime").clone();
    for p in primes {
        out *= p;
    }
    Odd::new(out).expect("modulus must be odd")
}

/// Compute the private exponent from its primes (p and q) and public exponent
/// This uses Euler's totient function
#[inline]
pub(crate) fn compute_private_exponent_euler_totient(
    primes: &[BoxedUint],
    exp: &BoxedUint,
) -> Result<BoxedUint> {
    if primes.len() < 2 {
        return Err(Error::InvalidPrime);
    }
    let bits = primes[0].bits_precision();
    let mut totient = BoxedUint::one_with_precision(bits);

    for prime in primes {
        totient *= prime - &BoxedUint::one();
    }
    let exp = exp.resize_unchecked(totient.bits_precision());

    // NOTE: `mod_inverse` checks if `exp` evenly divides `totient` and returns `None` if so.
    // This ensures that `exp` is not a factor of any `(prime - 1)`.
    let totient = NonZero::new(totient).expect("known");
    match exp.invert_mod(&totient).into_option() {
        Some(res) => Ok(res),
        None => Err(Error::InvalidPrime),
    }
}

/// Compute the private exponent from its primes (p and q) and public exponent
///
/// This is using the method defined by
/// [NIST 800-56B Section 6.2.1](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf#page=47).
/// (Carmichael function)
///
/// FIPS 186-4 **requires** the private exponent to be less than λ(n), which would
/// make Euler's totiem unreliable.
#[inline]
pub(crate) fn compute_private_exponent_carmicheal(
    p: &BoxedUint,
    q: &BoxedUint,
    exp: &BoxedUint,
) -> Result<BoxedUint> {
    let one = BoxedUint::one();
    let p1 = p - &one;
    let q1 = q - &one;

    // LCM inlined
    let gcd = p1.gcd(&q1);
    let lcm = p1 / NonZero::new(gcd).expect("gcd is non zero") * &q1;
    let exp = exp.resize_unchecked(lcm.bits_precision());
    if let Some(d) = exp.invert_mod(&NonZero::new(lcm).expect("non zero")).into() {
        Ok(d)
    } else {
        // `exp` evenly divides `lcm`
        Err(Error::InvalidPrime)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn recover_primes_works() {
        let bits = 2048;

        let n = BoxedUint::from_be_hex(
            concat!(
                "d397b84d98a4c26138ed1b695a8106ead91d553bf06041b62d3fdc50a041e222",
                "b8f4529689c1b82c5e71554f5dd69fa2f4b6158cf0dbeb57811a0fc327e1f28e",
                "74fe74d3bc166c1eabdc1b8b57b934ca8be5b00b4f29975bcc99acaf415b59bb",
                "28a6782bb41a2c3c2976b3c18dbadef62f00c6bb226640095096c0cc60d22fe7",
                "ef987d75c6a81b10d96bf292028af110dc7cc1bbc43d22adab379a0cd5d8078c",
                "c780ff5cd6209dea34c922cf784f7717e428d75b5aec8ff30e5f0141510766e2",
                "e0ab8d473c84e8710b2b98227c3db095337ad3452f19e2b9bfbccdd8148abf67",
                "76fa552775e6e75956e45229ae5a9c46949bab1e622f0e48f56524a84ed3483b"
            ),
            bits,
        )
        .unwrap();
        let e = BoxedUint::from(65_537u64);
        let d = BoxedUint::from_be_hex(
            concat!(
                "c4e70c689162c94c660828191b52b4d8392115df486a9adbe831e458d7395832",
                "0dc1b755456e93701e9702d76fb0b92f90e01d1fe248153281fe79aa9763a92f",
                "ae69d8d7ecd144de29fa135bd14f9573e349e45031e3b76982f583003826c552",
                "e89a397c1a06bd2163488630d92e8c2bb643d7abef700da95d685c941489a46f",
                "54b5316f62b5d2c3a7f1bbd134cb37353a44683fdc9d95d36458de22f6c44057",
                "fe74a0a436c4308f73f4da42f35c47ac16a7138d483afc91e41dc3a1127382e0",
                "c0f5119b0221b4fc639d6b9c38177a6de9b526ebd88c38d7982c07f98a0efd87",
                "7d508aae275b946915c02e2e1106d175d74ec6777f5e80d12c053d9c7be1e341"
            ),
            bits,
        )
        .unwrap();
        let p = BoxedUint::from_be_hex(
            concat!(
                "f827bbf3a41877c7cc59aebf42ed4b29c32defcb8ed96863d5b090a05a8930dd",
                "624a21c9dcf9838568fdfa0df65b8462a5f2ac913d6c56f975532bd8e78fb07b",
                "d405ca99a484bcf59f019bbddcb3933f2bce706300b4f7b110120c5df9018159",
                "067c35da3061a56c8635a52b54273b31271b4311f0795df6021e6355e1a42e61"
            ),
            bits / 2,
        )
        .unwrap();
        let q = BoxedUint::from_be_hex(
            concat!(
                "da4817ce0089dd36f2ade6a3ff410c73ec34bf1b4f6bda38431bfede11cef1f7",
                "f6efa70e5f8063a3b1f6e17296ffb15feefa0912a0325b8d1fd65a559e717b5b",
                "961ec345072e0ec5203d03441d29af4d64054a04507410cf1da78e7b6119d909",
                "ec66e6ad625bf995b279a4b3c5be7d895cd7c5b9c4c497fde730916fcdb4e41b"
            ),
            bits / 2,
        )
        .unwrap();

        let (mut p1, mut q1) = recover_primes(&NonZero::new(n).unwrap(), &e, &d).unwrap();

        if p1 < q1 {
            std::mem::swap(&mut p1, &mut q1);
        }
        assert_eq!(p, p1);
        assert_eq!(q, q1);
    }
}