use std::collections::HashMap;
use re_types::{
archetypes::Image,
datatypes::{TensorBuffer, TensorData, TensorDimension},
Archetype as _, AsComponents as _,
};
mod util;
#[test]
fn image_roundtrip() {
let all_expected = [Image {
data: TensorData {
shape: vec![
TensorDimension {
size: 2,
name: Some("height".into()),
},
TensorDimension {
size: 3,
name: Some("width".into()),
},
],
buffer: TensorBuffer::U8(vec![1, 2, 3, 4, 5, 6].into()),
}
.into(),
draw_order: None,
}];
let all_arch_serialized = [Image::try_from(ndarray::array![[1u8, 2, 3], [4, 5, 6]])
.unwrap()
.to_arrow()
.unwrap()];
let expected_extensions: HashMap<_, _> = [("data", vec!["rerun.components.TensorData"])].into();
for (expected, serialized) in all_expected.into_iter().zip(all_arch_serialized) {
for (field, array) in &serialized {
eprintln!("{} = {array:#?}", field.name);
if false {
util::assert_extensions(
&**array,
expected_extensions[field.name.as_str()].as_slice(),
);
}
}
let deserialized = Image::from_arrow(serialized).unwrap();
similar_asserts::assert_eq!(expected, deserialized);
}
}
#[test]
#[cfg(feature = "image")]
fn dynamic_image_roundtrip() {
use image::{Rgb, RgbImage};
let all_expected = [Image {
data: TensorData {
shape: vec![
TensorDimension {
size: 2,
name: Some("height".into()),
},
TensorDimension {
size: 3,
name: Some("width".into()),
},
TensorDimension {
size: 3,
name: Some("depth".into()),
},
],
buffer: TensorBuffer::U8(
vec![
0, 0, 128, 1, 0, 128, 2, 0, 128, 0, 1, 128, 1, 1, 128, 2, 1, 128, ]
.into(),
),
}
.into(),
draw_order: None,
}];
let mut img = RgbImage::new(3, 2);
for x in 0..3 {
for y in 0..2 {
img.put_pixel(x, y, Rgb([x as u8, y as u8, 128]));
}
}
let all_arch_serialized = [Image::try_from(img).unwrap().to_arrow().unwrap()];
let expected_extensions: HashMap<_, _> = [("data", vec!["rerun.components.TensorData"])].into();
for (expected, serialized) in all_expected.into_iter().zip(all_arch_serialized) {
for (field, array) in &serialized {
eprintln!("{} = {array:#?}", field.name);
if false {
util::assert_extensions(
&**array,
expected_extensions[field.name.as_str()].as_slice(),
);
}
}
let deserialized = Image::from_arrow(serialized).unwrap();
similar_asserts::assert_eq!(expected, deserialized);
}
}
macro_rules! check_image_array {
($img:ty, $typ:ty, $arr:expr, $color_dim:expr) => {{
let arr = $arr;
let arrow = <$img>::try_from(arr.clone()).unwrap().to_arrow().unwrap();
let img = <$img>::from_arrow(arrow).unwrap();
let color_dim = img
.data
.0
.shape
.iter()
.enumerate()
.find(|(_, dim)| dim.name.as_ref().map(|n| n.as_str()) == Some("depth"))
.map(|(ind, _)| ind as i32)
.unwrap_or(-1);
assert_eq!(color_dim, $color_dim);
let view1 = arr.view().into_dyn();
let view2 = ndarray::ArrayViewD::<$typ>::try_from(&img).unwrap();
assert_eq!(view1, view2);
}};
}
#[test]
fn image_base_ext() {
check_image_array!(Image, u8, ndarray::array![[4]], -1);
check_image_array!(Image, u16, ndarray::array![[1, 2, 3], [4, 5, 6]], -1);
check_image_array!(Image, u32, ndarray::array![[[1]]], -1);
check_image_array!(Image, u64, ndarray::array![[[1], [2], [3]]], -1);
check_image_array!(Image, f32, ndarray::array![[[1.0, 2.0, 3.0]]], 2);
check_image_array!(Image, f64, ndarray::array![[[1.0, 2.0, 3.0, 4.0, 5.0]]], -1);
check_image_array!(Image, u8, ndarray::array![[[1, 2, 3], [4, 5, 6]]], 2);
check_image_array!(Image, u8, ndarray::array![[[1, 2, 3, 4], [5, 6, 7, 8]]], 2);
check_image_array!(
Image,
u8,
ndarray::Array::from_shape_vec((1, 1, 3, 1), vec![1, 2, 3]).unwrap(),
-1
);
check_image_array!(
Image,
u8,
ndarray::Array::from_shape_vec((1, 1, 1, 3), vec![1, 2, 3]).unwrap(),
3
);
check_image_array!(
Image,
u8,
ndarray::Array::from_shape_vec((1, 1, 1, 5), vec![1, 2, 3, 4, 5]).unwrap(),
-1
);
check_image_array!(
Image,
u8,
ndarray::Array::from_shape_vec((2, 1, 3, 1), vec![1, 2, 3, 4, 5, 6]).unwrap(),
2
);
}