use self::GammaRepr::*;
use self::ChiSquaredRepr::*;
use {Rng, Open01};
use super::normal::StandardNormal;
use super::{IndependentSample, Sample, Exp};
#[derive(Clone, Copy)]
pub struct Gamma {
repr: GammaRepr,
}
#[derive(Clone, Copy)]
enum GammaRepr {
Large(GammaLargeShape),
One(Exp),
Small(GammaSmallShape)
}
#[derive(Clone, Copy)]
struct GammaSmallShape {
inv_shape: f64,
large_shape: GammaLargeShape
}
#[derive(Clone, Copy)]
struct GammaLargeShape {
scale: f64,
c: f64,
d: f64
}
impl Gamma {
pub fn new(shape: f64, scale: f64) -> Gamma {
assert!(shape > 0.0, "Gamma::new called with shape <= 0");
assert!(scale > 0.0, "Gamma::new called with scale <= 0");
let repr = match shape {
1.0 => One(Exp::new(1.0 / scale)),
0.0 ... 1.0 => Small(GammaSmallShape::new_raw(shape, scale)),
_ => Large(GammaLargeShape::new_raw(shape, scale))
};
Gamma { repr: repr }
}
}
impl GammaSmallShape {
fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
GammaSmallShape {
inv_shape: 1. / shape,
large_shape: GammaLargeShape::new_raw(shape + 1.0, scale)
}
}
}
impl GammaLargeShape {
fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
let d = shape - 1. / 3.;
GammaLargeShape {
scale: scale,
c: 1. / (9. * d).sqrt(),
d: d
}
}
}
impl Sample<f64> for Gamma {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl Sample<f64> for GammaSmallShape {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl Sample<f64> for GammaLargeShape {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for Gamma {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
match self.repr {
Small(ref g) => g.ind_sample(rng),
One(ref g) => g.ind_sample(rng),
Large(ref g) => g.ind_sample(rng),
}
}
}
impl IndependentSample<f64> for GammaSmallShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Open01(u) = rng.gen::<Open01<f64>>();
self.large_shape.ind_sample(rng) * u.powf(self.inv_shape)
}
}
impl IndependentSample<f64> for GammaLargeShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
loop {
let StandardNormal(x) = rng.gen::<StandardNormal>();
let v_cbrt = 1.0 + self.c * x;
if v_cbrt <= 0.0 { continue
}
let v = v_cbrt * v_cbrt * v_cbrt;
let Open01(u) = rng.gen::<Open01<f64>>();
let x_sqr = x * x;
if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
return self.d * v * self.scale
}
}
}
}
#[derive(Clone, Copy)]
pub struct ChiSquared {
repr: ChiSquaredRepr,
}
#[derive(Clone, Copy)]
enum ChiSquaredRepr {
DoFExactlyOne,
DoFAnythingElse(Gamma),
}
impl ChiSquared {
pub fn new(k: f64) -> ChiSquared {
let repr = if k == 1.0 {
DoFExactlyOne
} else {
assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
};
ChiSquared { repr: repr }
}
}
impl Sample<f64> for ChiSquared {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for ChiSquared {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
match self.repr {
DoFExactlyOne => {
let StandardNormal(norm) = rng.gen::<StandardNormal>();
norm * norm
}
DoFAnythingElse(ref g) => g.ind_sample(rng)
}
}
}
#[derive(Clone, Copy)]
pub struct FisherF {
numer: ChiSquared,
denom: ChiSquared,
dof_ratio: f64,
}
impl FisherF {
pub fn new(m: f64, n: f64) -> FisherF {
assert!(m > 0.0, "FisherF::new called with `m < 0`");
assert!(n > 0.0, "FisherF::new called with `n < 0`");
FisherF {
numer: ChiSquared::new(m),
denom: ChiSquared::new(n),
dof_ratio: n / m
}
}
}
impl Sample<f64> for FisherF {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for FisherF {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
self.numer.ind_sample(rng) / self.denom.ind_sample(rng) * self.dof_ratio
}
}
#[derive(Clone, Copy)]
pub struct StudentT {
chi: ChiSquared,
dof: f64
}
impl StudentT {
pub fn new(n: f64) -> StudentT {
assert!(n > 0.0, "StudentT::new called with `n <= 0`");
StudentT {
chi: ChiSquared::new(n),
dof: n
}
}
}
impl Sample<f64> for StudentT {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for StudentT {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let StandardNormal(norm) = rng.gen::<StandardNormal>();
norm * (self.dof / self.chi.ind_sample(rng)).sqrt()
}
}
#[cfg(test)]
mod test {
use distributions::{Sample, IndependentSample};
use super::{ChiSquared, StudentT, FisherF};
#[test]
fn test_chi_squared_one() {
let mut chi = ChiSquared::new(1.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let mut chi = ChiSquared::new(0.5);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let mut chi = ChiSquared::new(30.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
#[should_panic]
#[cfg_attr(target_env = "msvc", ignore)]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0);
}
#[test]
fn test_f() {
let mut f = FisherF::new(2.0, 32.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
f.sample(&mut rng);
f.ind_sample(&mut rng);
}
}
#[test]
fn test_t() {
let mut t = StudentT::new(11.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
t.sample(&mut rng);
t.ind_sample(&mut rng);
}
}
}