[go: up one dir, main page]

lexical-core 0.4.0

Lexical, to- and from-string conversion routines.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
//! Internal implementation of the Grisu2 algorithm.
//!
//! The optimized routines are adapted from Andrea Samoljuk's `fpconv` library,
//! which is available [here](https://github.com/night-shift/fpconv).
//!
//! The following benchmarks were run on an "Intel(R) Core(TM) i7-6560U
//! CPU @ 2.20GHz" CPU, on Fedora 28, Linux kernel version 4.18.16-200
//! (x86-64), using the lexical formatter, `dtoa::write()` or `x.to_string()`,
//! avoiding any inefficiencies in Rust string parsing for `format!(...)`
//! or `write!()` macros. The code was compiled with LTO and at an optimization
//! level of 3.
//!
//! The benchmarks with `std` were compiled using "rustc 1.29.2 (17a9dc751
//! 2018-10-05", and the `no_std` benchmarks were compiled using "rustc
//! 1.31.0-nightly (46880f41b 2018-10-15)".
//!
//! The benchmark code may be found `benches/ftoa.rs`.
//!
//! # Benchmarks
//!
//! | Type  |  lexical (ns/iter) | to_string (ns/iter)   | Relative Increase |
//! |:-----:|:------------------:|:---------------------:|:-----------------:|
//! | f32   | 1,221,025          | 2,711,290             | 2.22x             |
//! | f64   | 1,248,397          | 3,558,305             | 2.85x             |
//!
//! # Raw Benchmarks
//!
//! ```text
//! test f32_dtoa      ... bench:   1,174,070 ns/iter (+/- 442,501)
//! test f32_lexical   ... bench:   1,433,234 ns/iter (+/- 633,261)
//! test f32_ryu       ... bench:     669,828 ns/iter (+/- 192,291)
//! test f32_to_string ... bench:   3,341,733 ns/iter (+/- 1,346,744)
//! test f64_dtoa      ... bench:   1,302,522 ns/iter (+/- 364,655)
//! test f64_lexical   ... bench:   1,375,384 ns/iter (+/- 596,860)
//! test f64_ryu       ... bench:   1,015,171 ns/iter (+/- 187,552)
//! test f64_to_string ... bench:   3,900,299 ns/iter (+/- 521,956)
//! ```

// Code the generate the benchmark plot:
//  import numpy as np
//  import pandas as pd
//  import matplotlib.pyplot as plt
//  plt.style.use('ggplot')
//  lexical = np.array([1221025, 1375384]) / 1e6
//  dtoa = np.array([1174070, 1302522]) / 1e6
//  ryu = np.array([669828, 1015171]) / 1e6
//  rustcore = np.array([2711290, 3558305]) / 1e6
//  index = ["f32", "f64"]
//  df = pd.DataFrame({'lexical': lexical, 'lexical (dtoa)': dtoa, 'lexical (ryu)': ryu, 'rustcore': rustcore}, index = index, columns=['lexical', 'lexical (dtoa)', 'lexical (ryu)', 'rustcore'])
//  ax = df.plot.bar(rot=0, figsize=(16, 8), fontsize=14, color=['#E24A33', '#988ED5', '#8EBA42', '#348ABD'])
//  ax.set_ylabel("ms/iter")
//  ax.figure.tight_layout()
//  ax.legend(loc=2, prop={'size': 14})
//  plt.show()

use float::ExtendedFloat80;
use util::*;

// CACHED POWERS

/// Find cached power of 10 from the exponent.
#[inline]
fn cached_grisu_power(exp: i32, k: &mut i32)
    -> &'static ExtendedFloat80
{
    // FLOATING POINT CONSTANTS
    const ONE_LOG_TEN: f64 = 0.30102999566398114;
    const NPOWERS: i32 = 87;
    const FIRSTPOWER: i32 = -348;       // 10 ^ -348
    const STEPPOWERS: i32 = 8;
    const EXPMAX: i32 = -32;
    const EXPMIN: i32 = -60;

    let approx = -((exp + NPOWERS).as_f64()) * ONE_LOG_TEN;
    let approx = approx.as_i32();
    let mut idx = ((approx - FIRSTPOWER) / STEPPOWERS).as_usize();

    loop {
        let power = &GRISU_POWERS_OF_TEN[idx];
        let current = exp + power.exp + 64;
        if current < EXPMIN {
            idx += 1;
            continue;
        }

        if current > EXPMAX {
            idx -= 1;
            continue;
        }

        *k = FIRSTPOWER + idx.as_i32() * STEPPOWERS;
        return power;
    }
}

/// Cached powers of ten as specified by the Grisu algorithm.
///
/// Cached powers of 10^k, calculated as if by:
/// `ceil((alpha-e+63) * ONE_LOG_TEN);`
const GRISU_POWERS_OF_TEN: [ExtendedFloat80; 87] = [
    ExtendedFloat80 { mant: 18054884314459144840, exp: -1220 },
    ExtendedFloat80 { mant: 13451937075301367670, exp: -1193 },
    ExtendedFloat80 { mant: 10022474136428063862, exp: -1166 },
    ExtendedFloat80 { mant: 14934650266808366570, exp: -1140 },
    ExtendedFloat80 { mant: 11127181549972568877, exp: -1113 },
    ExtendedFloat80 { mant: 16580792590934885855, exp: -1087 },
    ExtendedFloat80 { mant: 12353653155963782858, exp: -1060 },
    ExtendedFloat80 { mant: 18408377700990114895, exp: -1034 },
    ExtendedFloat80 { mant: 13715310171984221708, exp: -1007 },
    ExtendedFloat80 { mant: 10218702384817765436, exp: -980 },
    ExtendedFloat80 { mant: 15227053142812498563, exp: -954 },
    ExtendedFloat80 { mant: 11345038669416679861, exp: -927 },
    ExtendedFloat80 { mant: 16905424996341287883, exp: -901 },
    ExtendedFloat80 { mant: 12595523146049147757, exp: -874 },
    ExtendedFloat80 { mant: 9384396036005875287, exp: -847 },
    ExtendedFloat80 { mant: 13983839803942852151, exp: -821 },
    ExtendedFloat80 { mant: 10418772551374772303, exp: -794 },
    ExtendedFloat80 { mant: 15525180923007089351, exp: -768 },
    ExtendedFloat80 { mant: 11567161174868858868, exp: -741 },
    ExtendedFloat80 { mant: 17236413322193710309, exp: -715 },
    ExtendedFloat80 { mant: 12842128665889583758, exp: -688 },
    ExtendedFloat80 { mant: 9568131466127621947, exp: -661 },
    ExtendedFloat80 { mant: 14257626930069360058, exp: -635 },
    ExtendedFloat80 { mant: 10622759856335341974, exp: -608 },
    ExtendedFloat80 { mant: 15829145694278690180, exp: -582 },
    ExtendedFloat80 { mant: 11793632577567316726, exp: -555 },
    ExtendedFloat80 { mant: 17573882009934360870, exp: -529 },
    ExtendedFloat80 { mant: 13093562431584567480, exp: -502 },
    ExtendedFloat80 { mant: 9755464219737475723, exp: -475 },
    ExtendedFloat80 { mant: 14536774485912137811, exp: -449 },
    ExtendedFloat80 { mant: 10830740992659433045, exp: -422 },
    ExtendedFloat80 { mant: 16139061738043178685, exp: -396 },
    ExtendedFloat80 { mant: 12024538023802026127, exp: -369 },
    ExtendedFloat80 { mant: 17917957937422433684, exp: -343 },
    ExtendedFloat80 { mant: 13349918974505688015, exp: -316 },
    ExtendedFloat80 { mant: 9946464728195732843, exp: -289 },
    ExtendedFloat80 { mant: 14821387422376473014, exp: -263 },
    ExtendedFloat80 { mant: 11042794154864902060, exp: -236 },
    ExtendedFloat80 { mant: 16455045573212060422, exp: -210 },
    ExtendedFloat80 { mant: 12259964326927110867, exp: -183 },
    ExtendedFloat80 { mant: 18268770466636286478, exp: -157 },
    ExtendedFloat80 { mant: 13611294676837538539, exp: -130 },
    ExtendedFloat80 { mant: 10141204801825835212, exp: -103 },
    ExtendedFloat80 { mant: 15111572745182864684, exp: -77 },
    ExtendedFloat80 { mant: 11258999068426240000, exp: -50 },
    ExtendedFloat80 { mant: 16777216000000000000, exp: -24 },
    ExtendedFloat80 { mant: 12500000000000000000, exp:  3 },
    ExtendedFloat80 { mant: 9313225746154785156, exp:  30 },
    ExtendedFloat80 { mant: 13877787807814456755, exp: 56 },
    ExtendedFloat80 { mant: 10339757656912845936, exp: 83 },
    ExtendedFloat80 { mant: 15407439555097886824, exp: 109 },
    ExtendedFloat80 { mant: 11479437019748901445, exp: 136 },
    ExtendedFloat80 { mant: 17105694144590052135, exp: 162 },
    ExtendedFloat80 { mant: 12744735289059618216, exp: 189 },
    ExtendedFloat80 { mant: 9495567745759798747, exp: 216 },
    ExtendedFloat80 { mant: 14149498560666738074, exp: 242 },
    ExtendedFloat80 { mant: 10542197943230523224, exp: 269 },
    ExtendedFloat80 { mant: 15709099088952724970, exp: 295 },
    ExtendedFloat80 { mant: 11704190886730495818, exp: 322 },
    ExtendedFloat80 { mant: 17440603504673385349, exp: 348 },
    ExtendedFloat80 { mant: 12994262207056124023, exp: 375 },
    ExtendedFloat80 { mant: 9681479787123295682, exp: 402 },
    ExtendedFloat80 { mant: 14426529090290212157, exp: 428 },
    ExtendedFloat80 { mant: 10748601772107342003, exp: 455 },
    ExtendedFloat80 { mant: 16016664761464807395, exp: 481 },
    ExtendedFloat80 { mant: 11933345169920330789, exp: 508 },
    ExtendedFloat80 { mant: 17782069995880619868, exp: 534 },
    ExtendedFloat80 { mant: 13248674568444952270, exp: 561 },
    ExtendedFloat80 { mant: 9871031767461413346, exp: 588 },
    ExtendedFloat80 { mant: 14708983551653345445, exp: 614 },
    ExtendedFloat80 { mant: 10959046745042015199, exp: 641 },
    ExtendedFloat80 { mant: 16330252207878254650, exp: 667 },
    ExtendedFloat80 { mant: 12166986024289022870, exp: 694 },
    ExtendedFloat80 { mant: 18130221999122236476, exp: 720 },
    ExtendedFloat80 { mant: 13508068024458167312, exp: 747 },
    ExtendedFloat80 { mant: 10064294952495520794, exp: 774 },
    ExtendedFloat80 { mant: 14996968138956309548, exp: 800 },
    ExtendedFloat80 { mant: 11173611982879273257, exp: 827 },
    ExtendedFloat80 { mant: 16649979327439178909, exp: 853 },
    ExtendedFloat80 { mant: 12405201291620119593, exp: 880 },
    ExtendedFloat80 { mant: 9242595204427927429, exp: 907 },
    ExtendedFloat80 { mant: 13772540099066387757, exp: 933 },
    ExtendedFloat80 { mant: 10261342003245940623, exp: 960 },
    ExtendedFloat80 { mant: 15290591125556738113, exp: 986 },
    ExtendedFloat80 { mant: 11392378155556871081, exp: 1013 },
    ExtendedFloat80 { mant: 16975966327722178521, exp: 1039 },
    ExtendedFloat80 { mant: 12648080533535911531, exp: 1066 }
];

// FTOA DECIMAL

// LOOKUPS
const TENS: [u64; 20] = [
    10000000000000000000, 1000000000000000000, 100000000000000000,
    10000000000000000, 1000000000000000, 100000000000000,
    10000000000000, 1000000000000, 100000000000,
    10000000000, 1000000000, 100000000,
    10000000, 1000000, 100000,
    10000, 1000, 100,
    10, 1
];

// FPCONV GRISU

/// Round digit to sane approximation.
#[inline]
fn round_digit(digits: &mut [u8], ndigits: usize, delta: u64, mut rem: u64, kappa: u64, mant: u64)
{
    while rem < mant && delta - rem >= kappa && (rem + kappa < mant || mant - rem > rem + kappa - mant)
    {
        digits[ndigits - 1] -= 1;
        rem += kappa;
    }
}

/// Generate digits from upper and lower range on rounding of number.
fn generate_digits(fp: &ExtendedFloat80, upper: &ExtendedFloat80, lower: &ExtendedFloat80, digits: &mut [u8], k: &mut i32)
    -> usize
{
    let wmant = upper.mant - fp.mant;
    let mut delta = upper.mant - lower.mant;

    let one = ExtendedFloat80 {
        mant: 1 << -upper.exp,
        exp: upper.exp,
    };

    let mut part1 = upper.mant >> -one.exp;
    let mut part2 = upper.mant & (one.mant - 1);

    let mut idx: usize = 0;
    let mut kappa: i32 = 10;
    // 1000000000
    // Guaranteed to be safe, TENS has 20 elements.
    let mut divp = index!(TENS[10..]).iter();
    while kappa > 0 {
        // Remember not to continue! This loop has an increment condition.
        let div = divp.next().unwrap();
        let digit = part1 / div;
        if digit != 0 || idx != 0 {
            digits[idx] = digit.as_u8() + b'0';
            idx += 1;
        }

        part1 -= digit.as_u64() * div;
        kappa -= 1;

        let tmp = (part1 <<-one.exp) + part2;
        if tmp <= delta {
            *k += kappa;
            round_digit(digits, idx, delta, tmp, div << -one.exp, wmant);
            return idx;
        }
    }

    /* 10 */
    // Guaranteed to be safe, TENS has 20 elements.
    let mut unit = index!(TENS[..=18]).iter().rev();
    loop {
        part2 *= 10;
        delta *= 10;
        kappa -= 1;

        let digit = part2 >> -one.exp;
        if digit != 0 || idx != 0 {
            digits[idx] = digit.as_u8() + b'0';
            idx += 1;
        }

        part2 &= one.mant - 1;
        let ten = unit.next().unwrap();
        if part2 < delta {
            *k += kappa;
            round_digit(digits, idx, delta, part2, one.mant, wmant * ten);
            return idx;
        }
    }
}

/// Core Grisu2 algorithm for the float formatter.
fn grisu2(d: f64, digits: &mut [u8], k: &mut i32)
    -> usize
{
    let mut w = ExtendedFloat80::from_f64(d);

    let (mut lower, mut upper) = w.normalized_boundaries();
    w.normalize();

    let mut ki: i32 = explicit_uninitialized();
    let cp = cached_grisu_power(upper.exp, &mut ki);

    w     = w.mul(&cp);
    upper = upper.mul(&cp);
    lower = lower.mul(&cp);

    lower.mant += 1;
    upper.mant -= 1;

    *k = -ki;

    generate_digits(&w, &upper, &lower, digits, k)
}

/// Write the produced digits to string.
///
/// Adds formatting for exponents, and other types of information.
fn emit_digits(digits: &mut [u8], mut ndigits: usize, dest: &mut [u8], k: i32)
    -> usize
{
    let exp = k + ndigits.as_i32() - 1;
    let mut exp = exp.abs().as_usize();

    // write plain integer (with ".0" suffix).
    if k >= 0 && exp < (ndigits + 7) {
        let idx = ndigits;
        let count = k.as_usize();
        // These are all safe, since digits.len() >= idx, and
        // dest.len() >= idx+count+2, so the range must be valid.
        copy_to_dst(dest, &index!(digits[..idx]));
        write_bytes(&mut index_mut!(dest[idx..idx+count]), b'0');
        copy_to_dst(&mut index_mut!(dest[idx+count..]), b".0");

        return ndigits + k.as_usize() + 2;
    }

    // write decimal w/o scientific notation
    if k < 0 && (k > -7 || exp < 4) {
        let offset = ndigits.as_isize() - k.abs().as_isize();
        // fp < 1.0 -> write leading zero
        if offset <= 0 {
            let offset = (-offset).as_usize();
            // These are all safe, since digits.len() >= ndigits, and
            // dest.len() >= ndigits+offset+2, so the range must be valid.
            index_mut!(dest[0] = b'0');
            index_mut!(dest[1] = b'.');
            write_bytes(&mut index_mut!(dest[2..offset+2]), b'0');
            copy_to_dst(&mut index_mut!(dest[offset+2..]), &index!(digits[..ndigits]));

            return ndigits + 2 + offset;

        } else {
            // fp > 1.0
            let offset = offset.as_usize();
            // These are all safe, since digits.len() >= ndigits, and
            // dest.len() >= ndigits+1, so the range must be valid.
            copy_to_dst(dest, &index!(digits[..offset]));
            index_mut!(dest[offset] = b'.');
            copy_to_dst(&mut index_mut!(dest[offset+1..]), &index!(digits[offset..ndigits]));

            return ndigits + 1;
        }
    }

    // write decimal w/ scientific notation
    ndigits = ndigits.min(18);

    let dst_len = dest.len();
    let mut dst_iter = dest.iter_mut();
    let mut src_iter = digits.iter().take(ndigits);
    *dst_iter.next().unwrap() = *src_iter.next().unwrap();

    if ndigits > 1 {
        *dst_iter.next().unwrap() = b'.';
        for &src in src_iter {
            *dst_iter.next().unwrap() = src;
        }
    }

    *dst_iter.next().unwrap() = exponent_notation_char(10);

    *dst_iter.next().unwrap() = match k + ndigits.as_i32() - 1 < 0 {
        true    => b'-',
        false   => b'+',
    };

    let mut cent: usize = 0;
    if exp > 99 {
        cent = exp / 100;
        *dst_iter.next().unwrap() = cent.as_u8() + b'0';
        exp -= cent * 100;
    }
    if exp > 9 {
        let dec = exp / 10;
        *dst_iter.next().unwrap() = dec.as_u8() + b'0';
        exp -= dec * 10;
    } else if cent != 0 {
        *dst_iter.next().unwrap() = b'0';
    }

    let shift = (exp % 10).as_u8();
    *dst_iter.next().unwrap() = shift + b'0';

    dst_len - dst_iter.count()
}

#[inline]
fn fpconv_dtoa(d: f64, dest: &mut [u8]) -> usize
{
    let mut digits: [u8; 18] = explicit_uninitialized();
    let mut k: i32 = 0;
    let ndigits = grisu2(d, &mut digits, &mut k);
    emit_digits(&mut digits, ndigits, dest, k)
}

// DECIMAL

/// Forward to double_decimal.
///
/// `f` must be non-special (NaN or infinite), non-negative,
/// and non-zero.
#[inline]
pub(crate) fn float_decimal<'a>(f: f32, bytes: &'a mut [u8])
    -> usize
{
    double_decimal(f.as_f64(), bytes)
}

// F64

/// Optimized algorithm for decimal numbers.
///
/// `d` must be non-special (NaN or infinite), non-negative,
/// and non-zero.
#[inline]
pub(crate) fn double_decimal<'a>(d: f64, bytes: &'a mut [u8])
    -> usize
{
    fpconv_dtoa(d, bytes)
}