use std::f32::consts::PI;
use math::*;
pub fn fuzzy_eq_f32(a: f32, b: f32) -> bool {
let epsilon = 0.000001;
return (a - b).abs() <= epsilon;
}
pub fn fuzzy_eq(a: Vec2, b: Vec2) -> bool { fuzzy_eq_f32(a.x, b.x) && fuzzy_eq_f32(a.y, b.y) }
pub fn ellipse_center_to_point(center: Vec2, ellipse_point: Vec2, radii: Vec2) -> Vec2 {
vec2((ellipse_point.x - center.x) / radii.x, (ellipse_point.y - center.y) / radii.y)
}
pub fn ellipse_point_from_angle(center: Vec2, radii: Vec2, angle: f32) -> Vec2 {
vec2(center.x + radii.x * angle.cos(), center.y + radii.y * angle.sin())
}
pub fn directed_angle(a: Vec2, b: Vec2) -> f32 {
let angle = atan2(b.y, b.x) - fast_atan2(a.y, a.x);
return if angle < 0.0 { angle + 2.0 * PI } else { angle };
}
pub fn directed_angle2(center: Vec2, a: Vec2, b: Vec2) -> f32 {
directed_angle(a - center, b - center)
}
pub fn angle_between(start_vector: Vec2, end_vector: Vec2) -> f32 {
let mut result = ((start_vector.x * end_vector.x + start_vector.y * end_vector.y) /
(start_vector.length() * end_vector.length())).acos();
if (start_vector.x * end_vector.y - start_vector.y * end_vector.x) < 0.0 {
result = -result;
}
result
}
#[inline]
pub fn atan2(y: f32, x: f32) -> f32 {
fast_atan2(y, x)
}
pub fn fast_atan2(y: f32, x: f32) -> f32 {
let x_abs = x.abs();
let y_abs = y.abs();
let a = x_abs.min(y_abs) / x_abs.max(y_abs);
let s = a * a;
let mut r = ((-0.0464964749 * s + 0.15931422) * s - 0.327622764) * s * a + a;
if y_abs > x_abs {
r = 1.57079637 - r;
}
if x < 0.0 {
r = 3.14159274 - r
}
if y < 0.0 {
r = -r
}
return r;
}
pub fn tangent(v: Vec2) -> Vec2 {
let l = v.length();
return vec2(-v.y / l, v.x / l);
}
pub fn line_intersection(a1: Vec2, a2: Vec2, b1: Vec2, b2: Vec2) -> Option<Vec2> {
let det = (a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x);
if det.abs() <= 0.000001 {
return None;
}
let inv_det = 1.0 / det;
let a = a1.x * a2.y - a1.y * a2.x;
let b = b1.x * b2.y - b1.y * b2.x;
return Some(
vec2(
(a * (b1.x - b2.x) - b * (a1.x - a2.x)) * inv_det,
(a * (b1.y - b2.y) - b * (a1.y - a2.y)) * inv_det,
)
);
}
pub fn segment_intersection(a1: Vec2, b1: Vec2, a2: Vec2, b2: Vec2) -> Option<Vec2> {
let v1 = b1 - a1;
let v2 = b2 - a2;
if fuzzy_eq(v2, vec2(0.0, 0.0)) {
return None;
}
let v1_cross_v2 = v1.cross(v2);
let a2_a1_cross_v1 = (a2 - a1).cross(v1);
if v1_cross_v2 == 0.0 {
if a2_a1_cross_v1 == 0.0 {
let v1_sqr_len = v1.square_length();
let v1_dot_a2a1 = v1.dot(a2 - a1);
if v1_dot_a2a1 > 0.0 && v1_dot_a2a1 < v1_sqr_len {
return Some(a2);
}
let v1_dot_b2a1 = v1.dot(b2 - a1);
if v1_dot_b2a1 > 0.0 && v1_dot_b2a1 < v1_sqr_len {
return Some(b2);
}
let v2_sqr_len = v2.square_length();
let v2_dot_a1a2 = v2.dot(a1 - a2);
if v2_dot_a1a2 > 0.0 && v2_dot_a1a2 < v2_sqr_len {
return Some(a1);
}
let v2_dot_b1a2 = v2.dot(b1 - a2);
if v2_dot_b1a2 > 0.0 && v2_dot_b1a2 < v2_sqr_len {
return Some(b1);
}
return None;
}
return None;
}
let t = (a2 - a1).cross(v2) / v1_cross_v2;
let u = a2_a1_cross_v1 / v1_cross_v2;
if t > 0.00001 && t < 0.9999 && u > 0.00001 && u < 0.9999 {
return Some(a1 + (v1 * t));
}
return None;
}
#[test]
fn test_segment_intersection() {
assert!(
segment_intersection(vec2(0.0, -2.0), vec2(-5.0, 2.0), vec2(-5.0, 0.0), vec2(-11.0, 5.0))
.is_none()
);
let i = segment_intersection(vec2(0.0, 0.0), vec2(1.0, 1.0), vec2(0.0, 1.0), vec2(1.0, 0.0))
.unwrap();
println!(" intersection: {:?}", i);
assert!(fuzzy_eq(i, vec2(0.5, 0.5)));
assert!(segment_intersection(
vec2(0.0, 0.0), vec2(0.0, 1.0),
vec2(1.0, 0.0), vec2(1.0, 1.0)
) .is_none());
assert!(segment_intersection(
vec2(0.0, 0.0), vec2(1.0, 0.0),
vec2(2.0, 0.0), vec2(3.0, 0.0)
).is_none());
assert!(segment_intersection(
vec2(0.0, 0.0), vec2(2.0, 0.0),
vec2(1.0, 0.0), vec2(3.0, 0.0)
).is_some());
assert!(segment_intersection(
vec2(3.0, 0.0), vec2(1.0, 0.0),
vec2(2.0, 0.0), vec2(4.0, 0.0)
).is_some());
assert!(segment_intersection(
vec2(2.0, 0.0), vec2(4.0, 0.0),
vec2(3.0, 0.0), vec2(1.0, 0.0)
).is_some());
assert!(segment_intersection(
vec2(1.0, 0.0), vec2(4.0, 0.0),
vec2(2.0, 0.0), vec2(3.0, 0.0)
).is_some());
assert!(segment_intersection(
vec2(2.0, 0.0), vec2(3.0, 0.0),
vec2(1.0, 0.0), vec2(4.0, 0.0)
).is_some());
assert!(segment_intersection(
vec2(0.0, 0.0), vec2(1.0, 0.0),
vec2(0.0, 1.0), vec2(1.0, 1.0)
).is_none());
}
pub fn line_horizontal_intersection(a: Vec2, b: Vec2, y: f32) -> f32 {
let vx = b.x - a.x;
let vy = b.y - a.y;
if vy == 0.0 {
return a.x.max(b.x);
}
return a.x + (y - a.y) * vx / vy;
}
#[cfg(test)]
fn assert_almost_eq(a: f32, b: f32) {
if (a - b).abs() < 0.0001 {
return;
}
println!("expected {} and {} to be equal", a, b);
panic!();
}
#[test]
fn test_intersect_segment_horizontal() {
assert_almost_eq(line_horizontal_intersection(vec2(0.0, 0.0), vec2(0.0, 2.0), 1.0), 0.0);
assert_almost_eq(line_horizontal_intersection(vec2(0.0, 2.0), vec2(2.0, 0.0), 1.0), 1.0);
assert_almost_eq(line_horizontal_intersection(vec2(0.0, 1.0), vec2(3.0, 0.0), 0.0), 3.0);
}
pub fn triangle_contains(triangle: &[Point], point: Point) -> bool {
let v0 = triangle[2] - triangle[0];
let v1 = triangle[1] - triangle[0];
let v2 = point - triangle[0];
let dot00 = v0.dot(v0);
let dot01 = v0.dot(v1);
let dot02 = v0.dot(v2);
let dot11 = v1.dot(v1);
let dot12 = v1.dot(v2);
let inv = 1.0 / (dot00 * dot11 - dot01 * dot01);
let u = (dot11 * dot02 - dot01 * dot12) * inv;
let v = (dot11 * dot12 - dot01 * dot02) * inv;
return u >= 0.0 && v >= 0.0 && u + v < 1.0;
}
#[test]
fn test_triangle_contains() {
assert!(
triangle_contains(&[point(0.0, 0.0), point(1.0, 0.0), point(0.0, 1.0)], point(0.2, 0.2))
);
assert!(
!triangle_contains(&[point(0.0, 0.0), point(1.0, 0.0), point(0.0, 1.0)], point(1.2, 0.2))
);
assert!(
triangle_contains(&[point(0.0, 0.0), point(1.0, 0.0), point(0.0, 1.0)], point(0.0, 0.0))
);
}
pub fn compute_normal(e1: Vec2, e2: Vec2) -> Vec2 {
let e1_norm = e1.normalized();
let n = e1_norm - e2.normalized();
if n.length() == 0.0 {
return vec2(e1_norm.y, -e1_norm.x);
}
let mut n_norm = n.normalized();
if e1_norm.cross(n_norm) > 0.0 {
n_norm = -n_norm;
}
let angle = directed_angle(e1, e2) * 0.5;
let sin = angle.sin();
if sin == 0.0 {
return e1_norm;
}
return n_norm / sin;
}
#[test]
fn test_compute_normal() {
fn assert_almost_eq(a: Vec2, b: Vec2) {
if (a - b).square_length() > 0.00001 {
panic!("assert almost equal: {:?} != {:?}", a, b);
}
}
for i in 1..10 {
let f = i as f32;
assert_almost_eq(compute_normal(vec2(f, 0.0), vec2(0.0, f * f)), vec2(1.0, -1.0));
}
for i in 1..10 {
let f = i as f32;
assert_almost_eq(compute_normal(vec2(f, 0.0), vec2(f * f, 0.0)), vec2(0.0, -1.0));
}
}