use approxeq::ApproxEq;
use trig::Trig;
use point::{Point2D, Point4D};
use num::{One, Zero};
use std::ops::{Add, Mul, Sub, Div, Neg};
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "plugins", derive(HeapSizeOf, Deserialize, Serialize))]
pub struct Matrix4D<T> {
pub m11: T, pub m12: T, pub m13: T, pub m14: T,
pub m21: T, pub m22: T, pub m23: T, pub m24: T,
pub m31: T, pub m32: T, pub m33: T, pub m34: T,
pub m41: T, pub m42: T, pub m43: T, pub m44: T,
}
impl <T:Add<T, Output=T> +
ApproxEq<T> +
Copy +
Clone +
Div<T, Output=T> +
Mul<T, Output=T> +
Neg<Output=T> +
One +
PartialOrd +
Sub<T, Output=T> +
Trig +
Zero> Matrix4D<T> {
#[inline]
pub fn new(
m11: T, m12: T, m13: T, m14: T,
m21: T, m22: T, m23: T, m24: T,
m31: T, m32: T, m33: T, m34: T,
m41: T, m42: T, m43: T, m44: T)
-> Matrix4D<T> {
Matrix4D {
m11: m11, m12: m12, m13: m13, m14: m14,
m21: m21, m22: m22, m23: m23, m24: m24,
m31: m31, m32: m32, m33: m33, m34: m34,
m41: m41, m42: m42, m43: m43, m44: m44
}
}
#[inline]
pub fn new_2d(m11: T, m12: T, m21: T, m22: T, m41: T, m42: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
Matrix4D {
m11: m11, m12: m12, m13: _0, m14: _0,
m21: m21, m22: m22, m23: _0, m24: _0,
m31: _0, m32: _0, m33: _1, m34: _0,
m41: m41, m42: m42, m43: _0, m44: _1
}
}
pub fn ortho(left: T, right: T,
bottom: T, top: T,
near: T, far: T) -> Matrix4D<T> {
let tx = -((right + left) / (right - left));
let ty = -((top + bottom) / (top - bottom));
let tz = -((far + near) / (far - near));
let (_0, _1): (T, T) = (Zero::zero(), One::one());
let _2 = _1 + _1;
Matrix4D::new(_2 / (right - left),
_0,
_0,
_0,
_0,
_2 / (top - bottom),
_0,
_0,
_0,
_0,
-_2 / (far - near),
_0,
tx,
ty,
tz,
_1)
}
#[inline]
pub fn identity() -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
Matrix4D::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
#[inline]
pub fn is_2d(&self) -> bool {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
self.m31 == _0 && self.m32 == _0 &&
self.m13 == _0 && self.m23 == _0 &&
self.m43 == _0 && self.m14 == _0 &&
self.m24 == _0 && self.m34 == _0 &&
self.m33 == _1 && self.m44 == _1
}
pub fn approx_eq(&self, other: &Matrix4D<T>) -> bool {
self.m11.approx_eq(&other.m11) && self.m12.approx_eq(&other.m12) &&
self.m13.approx_eq(&other.m13) && self.m14.approx_eq(&other.m14) &&
self.m21.approx_eq(&other.m21) && self.m22.approx_eq(&other.m22) &&
self.m23.approx_eq(&other.m23) && self.m24.approx_eq(&other.m24) &&
self.m31.approx_eq(&other.m31) && self.m32.approx_eq(&other.m32) &&
self.m33.approx_eq(&other.m33) && self.m34.approx_eq(&other.m34) &&
self.m41.approx_eq(&other.m41) && self.m42.approx_eq(&other.m42) &&
self.m43.approx_eq(&other.m43) && self.m44.approx_eq(&other.m44)
}
pub fn mul(&self, m: &Matrix4D<T>) -> Matrix4D<T> {
Matrix4D::new(m.m11*self.m11 + m.m12*self.m21 + m.m13*self.m31 + m.m14*self.m41,
m.m11*self.m12 + m.m12*self.m22 + m.m13*self.m32 + m.m14*self.m42,
m.m11*self.m13 + m.m12*self.m23 + m.m13*self.m33 + m.m14*self.m43,
m.m11*self.m14 + m.m12*self.m24 + m.m13*self.m34 + m.m14*self.m44,
m.m21*self.m11 + m.m22*self.m21 + m.m23*self.m31 + m.m24*self.m41,
m.m21*self.m12 + m.m22*self.m22 + m.m23*self.m32 + m.m24*self.m42,
m.m21*self.m13 + m.m22*self.m23 + m.m23*self.m33 + m.m24*self.m43,
m.m21*self.m14 + m.m22*self.m24 + m.m23*self.m34 + m.m24*self.m44,
m.m31*self.m11 + m.m32*self.m21 + m.m33*self.m31 + m.m34*self.m41,
m.m31*self.m12 + m.m32*self.m22 + m.m33*self.m32 + m.m34*self.m42,
m.m31*self.m13 + m.m32*self.m23 + m.m33*self.m33 + m.m34*self.m43,
m.m31*self.m14 + m.m32*self.m24 + m.m33*self.m34 + m.m34*self.m44,
m.m41*self.m11 + m.m42*self.m21 + m.m43*self.m31 + m.m44*self.m41,
m.m41*self.m12 + m.m42*self.m22 + m.m43*self.m32 + m.m44*self.m42,
m.m41*self.m13 + m.m42*self.m23 + m.m43*self.m33 + m.m44*self.m43,
m.m41*self.m14 + m.m42*self.m24 + m.m43*self.m34 + m.m44*self.m44)
}
pub fn invert(&self) -> Matrix4D<T> {
let det = self.determinant();
if det == Zero::zero() {
return Matrix4D::identity();
}
let m = Matrix4D::new(
self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +
self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -
self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44,
self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -
self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +
self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44,
self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +
self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -
self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44,
self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -
self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +
self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34,
self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -
self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +
self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44,
self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +
self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -
self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44,
self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -
self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +
self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44,
self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +
self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -
self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34,
self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +
self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -
self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44,
self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -
self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +
self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44,
self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +
self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -
self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44,
self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -
self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +
self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34,
self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -
self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +
self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43,
self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +
self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -
self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43,
self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -
self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +
self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43,
self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +
self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -
self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33
);
let _1: T = One::one();
m.mul_s(_1 / det)
}
pub fn determinant(&self) -> T {
self.m14 * self.m23 * self.m32 * self.m41 -
self.m13 * self.m24 * self.m32 * self.m41 -
self.m14 * self.m22 * self.m33 * self.m41 +
self.m12 * self.m24 * self.m33 * self.m41 +
self.m13 * self.m22 * self.m34 * self.m41 -
self.m12 * self.m23 * self.m34 * self.m41 -
self.m14 * self.m23 * self.m31 * self.m42 +
self.m13 * self.m24 * self.m31 * self.m42 +
self.m14 * self.m21 * self.m33 * self.m42 -
self.m11 * self.m24 * self.m33 * self.m42 -
self.m13 * self.m21 * self.m34 * self.m42 +
self.m11 * self.m23 * self.m34 * self.m42 +
self.m14 * self.m22 * self.m31 * self.m43 -
self.m12 * self.m24 * self.m31 * self.m43 -
self.m14 * self.m21 * self.m32 * self.m43 +
self.m11 * self.m24 * self.m32 * self.m43 +
self.m12 * self.m21 * self.m34 * self.m43 -
self.m11 * self.m22 * self.m34 * self.m43 -
self.m13 * self.m22 * self.m31 * self.m44 +
self.m12 * self.m23 * self.m31 * self.m44 +
self.m13 * self.m21 * self.m32 * self.m44 -
self.m11 * self.m23 * self.m32 * self.m44 -
self.m12 * self.m21 * self.m33 * self.m44 +
self.m11 * self.m22 * self.m33 * self.m44
}
pub fn mul_s(&self, x: T) -> Matrix4D<T> {
Matrix4D::new(self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x,
self.m21 * x, self.m22 * x, self.m23 * x, self.m24 * x,
self.m31 * x, self.m32 * x, self.m33 * x, self.m34 * x,
self.m41 * x, self.m42 * x, self.m43 * x, self.m44 * x)
}
pub fn scale(&self, x: T, y: T, z: T) -> Matrix4D<T> {
Matrix4D::new(self.m11 * x, self.m12, self.m13, self.m14,
self.m21 , self.m22 * y, self.m23, self.m24,
self.m31 , self.m32, self.m33 * z, self.m34,
self.m41 , self.m42, self.m43, self.m44)
}
#[inline]
pub fn transform_point(&self, p: &Point2D<T>) -> Point2D<T> {
Point2D::new(p.x * self.m11 + p.y * self.m21 + self.m41,
p.x * self.m12 + p.y * self.m22 + self.m42)
}
#[inline]
pub fn transform_point4d(&self, p: &Point4D<T>) -> Point4D<T> {
let x = p.x * self.m11 + p.y * self.m21 + p.z * self.m31 + self.m41;
let y = p.x * self.m12 + p.y * self.m22 + p.z * self.m32 + self.m42;
let z = p.x * self.m13 + p.y * self.m23 + p.z * self.m33 + self.m43;
let w = p.x * self.m14 + p.y * self.m24 + p.z * self.m34 + self.m44;
Point4D::new(x, y, z, w)
}
pub fn to_array(&self) -> [T; 16] {
[
self.m11, self.m12, self.m13, self.m14,
self.m21, self.m22, self.m23, self.m24,
self.m31, self.m32, self.m33, self.m34,
self.m41, self.m42, self.m43, self.m44
]
}
pub fn translate(&self, x: T, y: T, z: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
let matrix = Matrix4D::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
x, y, z, _1);
self.mul(&matrix)
}
pub fn create_translation(x: T, y: T, z: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
Matrix4D::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
x, y, z, _1)
}
pub fn create_scale(x: T, y: T, z: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
Matrix4D::new( x, _0, _0, _0,
_0, y, _0, _0,
_0, _0, z, _0,
_0, _0, _0, _1)
}
pub fn create_rotation(x: T, y: T, z: T, theta: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
let _2 = _1 + _1;
let xx = x * x;
let yy = y * y;
let zz = z * z;
let half_theta = theta / _2;
let sc = half_theta.sin() * half_theta.cos();
let sq = half_theta.sin() * half_theta.sin();
Matrix4D::new(
_1 - _2 * (yy + zz) * sq,
_2 * (x * y * sq - z * sc),
_2 * (x * z * sq + y * sc),
_0,
_2 * (x * y * sq + z * sc),
_1 - _2 * (xx + zz) * sq,
_2 * (y * z * sq - x * sc),
_0,
_2 * (x * z * sq - y * sc),
_2 * (y * z * sq + x * sc),
_1 - _2 * (xx + yy) * sq,
_0,
_0,
_0,
_0,
_1
)
}
pub fn create_skew(alpha: T, beta: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
let (sx, sy) = (beta.tan(), alpha.tan());
Matrix4D::new(_1, sx, _0, _0,
sy, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
pub fn create_perspective(d: T) -> Matrix4D<T> {
let (_0, _1): (T, T) = (Zero::zero(), One::one());
Matrix4D::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, -_1 / d,
_0, _0, _0, _1)
}
}