use core;
use conv::ApproxFrom;
#[derive(Debug, Clone)]
pub struct Average {
avg: f64,
n: u64,
v: f64,
}
impl Average {
pub fn new() -> Average {
Average { avg: 0., n: 0, v: 0. }
}
pub fn add(&mut self, sample: f64) {
self.n += 1;
let delta = sample - self.avg;
self.avg += delta / f64::approx_from(self.n).unwrap();
self.v += delta * (sample - self.avg);
}
pub fn is_empty(&self) -> bool {
self.n == 0
}
pub fn mean(&self) -> f64 {
self.avg
}
pub fn len(&self) -> u64 {
self.n
}
pub fn sample_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n - 1).unwrap()
}
pub fn population_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n).unwrap()
}
pub fn error(&self) -> f64 {
if self.n == 0 {
return 0.;
}
(self.sample_variance() / f64::approx_from(self.n).unwrap()).sqrt()
}
pub fn merge(&mut self, other: &Average) {
let delta = other.avg - self.avg;
let len_self = f64::approx_from(self.n).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other;
self.n += other.n;
self.avg = (len_self * self.avg + len_other * other.avg) / len_total;
self.v += other.v + delta*delta * len_self * len_other / len_total;
}
}
impl core::default::Default for Average {
fn default() -> Average {
Average::new()
}
}
impl core::iter::FromIterator<f64> for Average {
fn from_iter<T>(iter: T) -> Average
where T: IntoIterator<Item=f64>
{
let mut a = Average::new();
for i in iter {
a.add(i);
}
a
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: Average = sequence.iter().map(|x| *x).collect();
let mut avg_left: Average = left.iter().map(|x| *x).collect();
let avg_right: Average = right.iter().map(|x| *x).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_eq!(avg_total.avg, avg_left.avg);
assert_eq!(avg_total.v, avg_left.v);
}
}
}