[go: up one dir, main page]

ordermap 0.5.10

A hash table with consistent order and fast iteration.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! Parallel iterator types for [`OrderSet`] with [rayon].
//!
//! You will rarely need to interact with this module directly unless you need to name one of the
//! iterator types.

pub use indexmap::set::rayon::{
    IntoParIter, ParDifference, ParDrain, ParIntersection, ParIter, ParSymmetricDifference,
    ParUnion,
};

use super::OrderSet;
use core::cmp::Ordering;
use core::hash::{BuildHasher, Hash};
use core::ops::RangeBounds;
use rayon::prelude::*;

impl<T, S> IntoParallelIterator for OrderSet<T, S>
where
    T: Send,
{
    type Item = T;
    type Iter = IntoParIter<T>;

    fn into_par_iter(self) -> Self::Iter {
        self.inner.into_par_iter()
    }
}

impl<'a, T, S> IntoParallelIterator for &'a OrderSet<T, S>
where
    T: Sync,
{
    type Item = &'a T;
    type Iter = ParIter<'a, T>;

    fn into_par_iter(self) -> Self::Iter {
        self.inner.par_iter()
    }
}

impl<'a, T, S> ParallelDrainRange<usize> for &'a mut OrderSet<T, S>
where
    T: Send,
{
    type Item = T;
    type Iter = ParDrain<'a, T>;

    fn par_drain<R: RangeBounds<usize>>(self, range: R) -> Self::Iter {
        self.inner.par_drain(range)
    }
}

impl<T, S> OrderSet<T, S>
where
    T: PartialEq + Sync,
{
    /// Returns `true` if `self` contains all of the same values as `other`,
    /// in the same indexed order, determined in parallel.
    pub fn par_eq<S2>(&self, other: &OrderSet<T, S2>) -> bool
    where
        S2: BuildHasher + Sync,
    {
        self.len() == other.len() && self.par_iter().eq(other)
    }
}

/// Parallel iterator methods and other parallel methods.
///
/// The following methods **require crate feature `"rayon"`**.
///
/// See also the `IntoParallelIterator` implementations.
impl<T, S> OrderSet<T, S>
where
    T: Hash + Eq + Sync,
    S: BuildHasher + Sync,
{
    /// Return a parallel iterator over the values that are in `self` but not `other`.
    ///
    /// While parallel iterators can process items in any order, their relative order
    /// in the `self` set is still preserved for operations like `reduce` and `collect`.
    pub fn par_difference<'a, S2>(
        &'a self,
        other: &'a OrderSet<T, S2>,
    ) -> ParDifference<'a, T, S, S2>
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_difference(&other.inner)
    }

    /// Return a parallel iterator over the values that are in `self` or `other`,
    /// but not in both.
    ///
    /// While parallel iterators can process items in any order, their relative order
    /// in the sets is still preserved for operations like `reduce` and `collect`.
    /// Values from `self` are produced in their original order, followed by
    /// values from `other` in their original order.
    pub fn par_symmetric_difference<'a, S2>(
        &'a self,
        other: &'a OrderSet<T, S2>,
    ) -> ParSymmetricDifference<'a, T, S, S2>
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_symmetric_difference(&other.inner)
    }

    /// Return a parallel iterator over the values that are in both `self` and `other`.
    ///
    /// While parallel iterators can process items in any order, their relative order
    /// in the `self` set is still preserved for operations like `reduce` and `collect`.
    pub fn par_intersection<'a, S2>(
        &'a self,
        other: &'a OrderSet<T, S2>,
    ) -> ParIntersection<'a, T, S, S2>
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_intersection(&other.inner)
    }

    /// Return a parallel iterator over all values that are in `self` or `other`.
    ///
    /// While parallel iterators can process items in any order, their relative order
    /// in the sets is still preserved for operations like `reduce` and `collect`.
    /// Values from `self` are produced in their original order, followed by
    /// values that are unique to `other` in their original order.
    pub fn par_union<'a, S2>(&'a self, other: &'a OrderSet<T, S2>) -> ParUnion<'a, T, S, S2>
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_union(&other.inner)
    }

    /// Returns `true` if `self` has no elements in common with `other`,
    /// determined in parallel.
    pub fn par_is_disjoint<S2>(&self, other: &OrderSet<T, S2>) -> bool
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_is_disjoint(&other.inner)
    }

    /// Returns `true` if all elements of `other` are contained in `self`,
    /// determined in parallel.
    pub fn par_is_superset<S2>(&self, other: &OrderSet<T, S2>) -> bool
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_is_superset(&other.inner)
    }

    /// Returns `true` if all elements of `self` are contained in `other`,
    /// determined in parallel.
    pub fn par_is_subset<S2>(&self, other: &OrderSet<T, S2>) -> bool
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_is_subset(&other.inner)
    }

    /// Returns `true` if `self` contains all of the same values as `other`,
    /// regardless of each set's indexed order, determined in parallel.
    pub fn par_set_eq<S2>(&self, other: &OrderSet<T, S2>) -> bool
    where
        S2: BuildHasher + Sync,
    {
        self.inner.par_eq(&other.inner)
    }
}

/// Parallel sorting methods.
///
/// The following methods **require crate feature `"rayon"`**.
impl<T, S> OrderSet<T, S>
where
    T: Send,
{
    /// Sort the set's values in parallel by their default ordering.
    pub fn par_sort(&mut self)
    where
        T: Ord,
    {
        self.inner.par_sort();
    }

    /// Sort the set's values in place and in parallel, using the comparison function `cmp`.
    pub fn par_sort_by<F>(&mut self, cmp: F)
    where
        F: Fn(&T, &T) -> Ordering + Sync,
    {
        self.inner.par_sort_by(cmp);
    }

    /// Sort the values of the set in parallel and return a by-value parallel iterator of
    /// the values with the result.
    pub fn par_sorted_by<F>(self, cmp: F) -> IntoParIter<T>
    where
        F: Fn(&T, &T) -> Ordering + Sync,
    {
        self.inner.par_sorted_by(cmp)
    }

    /// Sort the set's values in place and in parallel, using a key extraction function.
    pub fn par_sort_by_key<K, F>(&mut self, sort_key: F)
    where
        K: Ord,
        F: Fn(&T) -> K + Sync,
    {
        self.inner.par_sort_by_key(sort_key)
    }

    /// Sort the set's values in parallel by their default ordering.
    pub fn par_sort_unstable(&mut self)
    where
        T: Ord,
    {
        self.inner.par_sort_unstable();
    }

    /// Sort the set's values in place and in parallel, using the comparison function `cmp`.
    pub fn par_sort_unstable_by<F>(&mut self, cmp: F)
    where
        F: Fn(&T, &T) -> Ordering + Sync,
    {
        self.inner.par_sort_unstable_by(cmp);
    }

    /// Sort the values of the set in parallel and return a by-value parallel iterator of
    /// the values with the result.
    pub fn par_sorted_unstable_by<F>(self, cmp: F) -> IntoParIter<T>
    where
        F: Fn(&T, &T) -> Ordering + Sync,
    {
        self.inner.par_sorted_unstable_by(cmp)
    }

    /// Sort the set's values in place and in parallel, using a key extraction function.
    pub fn par_sort_unstable_by_key<K, F>(&mut self, sort_key: F)
    where
        K: Ord,
        F: Fn(&T) -> K + Sync,
    {
        self.inner.par_sort_unstable_by_key(sort_key)
    }

    /// Sort the set's values in place and in parallel, using a key extraction function.
    pub fn par_sort_by_cached_key<K, F>(&mut self, sort_key: F)
    where
        K: Ord + Send,
        F: Fn(&T) -> K + Sync,
    {
        self.inner.par_sort_by_cached_key(sort_key);
    }
}

impl<T, S> FromParallelIterator<T> for OrderSet<T, S>
where
    T: Eq + Hash + Send,
    S: BuildHasher + Default + Send,
{
    fn from_par_iter<I>(iter: I) -> Self
    where
        I: IntoParallelIterator<Item = T>,
    {
        Self {
            inner: <_>::from_par_iter(iter),
        }
    }
}

impl<T, S> ParallelExtend<T> for OrderSet<T, S>
where
    T: Eq + Hash + Send,
    S: BuildHasher + Send,
{
    fn par_extend<I>(&mut self, iter: I)
    where
        I: IntoParallelIterator<Item = T>,
    {
        self.inner.par_extend(iter);
    }
}

impl<'a, T: 'a, S> ParallelExtend<&'a T> for OrderSet<T, S>
where
    T: Copy + Eq + Hash + Send + Sync,
    S: BuildHasher + Send,
{
    fn par_extend<I>(&mut self, iter: I)
    where
        I: IntoParallelIterator<Item = &'a T>,
    {
        self.inner.par_extend(iter);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::vec::Vec;

    #[test]
    fn insert_order() {
        let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
        let mut set = OrderSet::new();

        for &elt in &insert {
            set.insert(elt);
        }

        assert_eq!(set.par_iter().count(), set.len());
        assert_eq!(set.par_iter().count(), insert.len());
        insert.par_iter().zip(&set).for_each(|(a, b)| {
            assert_eq!(a, b);
        });
        (0..insert.len())
            .into_par_iter()
            .zip(&set)
            .for_each(|(i, v)| {
                assert_eq!(set.get_index(i).unwrap(), v);
            });
    }

    #[test]
    fn partial_eq_and_eq() {
        let mut set_a = OrderSet::new();
        set_a.insert(1);
        set_a.insert(2);
        let mut set_b = set_a.clone();
        assert!(set_a.par_eq(&set_b));
        set_b.swap_remove(&1);
        assert!(!set_a.par_eq(&set_b));
        set_b.insert(3);
        assert!(!set_a.par_eq(&set_b));

        let set_c: OrderSet<_> = set_b.into_par_iter().collect();
        assert!(!set_a.par_eq(&set_c));
        assert!(!set_c.par_eq(&set_a));
    }

    #[test]
    fn extend() {
        let mut set = OrderSet::new();
        set.par_extend(vec![&1, &2, &3, &4]);
        set.par_extend(vec![5, 6]);
        assert_eq!(
            set.into_par_iter().collect::<Vec<_>>(),
            vec![1, 2, 3, 4, 5, 6]
        );
    }

    #[test]
    fn comparisons() {
        let set_a: OrderSet<_> = (0..3).collect();
        let set_b: OrderSet<_> = (3..6).collect();
        let set_c: OrderSet<_> = (0..6).collect();
        let set_d: OrderSet<_> = (3..9).collect();

        assert!(!set_a.par_is_disjoint(&set_a));
        assert!(set_a.par_is_subset(&set_a));
        assert!(set_a.par_is_superset(&set_a));

        assert!(set_a.par_is_disjoint(&set_b));
        assert!(set_b.par_is_disjoint(&set_a));
        assert!(!set_a.par_is_subset(&set_b));
        assert!(!set_b.par_is_subset(&set_a));
        assert!(!set_a.par_is_superset(&set_b));
        assert!(!set_b.par_is_superset(&set_a));

        assert!(!set_a.par_is_disjoint(&set_c));
        assert!(!set_c.par_is_disjoint(&set_a));
        assert!(set_a.par_is_subset(&set_c));
        assert!(!set_c.par_is_subset(&set_a));
        assert!(!set_a.par_is_superset(&set_c));
        assert!(set_c.par_is_superset(&set_a));

        assert!(!set_c.par_is_disjoint(&set_d));
        assert!(!set_d.par_is_disjoint(&set_c));
        assert!(!set_c.par_is_subset(&set_d));
        assert!(!set_d.par_is_subset(&set_c));
        assert!(!set_c.par_is_superset(&set_d));
        assert!(!set_d.par_is_superset(&set_c));
    }

    #[test]
    fn iter_comparisons() {
        use std::iter::empty;

        fn check<'a, I1, I2>(iter1: I1, iter2: I2)
        where
            I1: ParallelIterator<Item = &'a i32>,
            I2: Iterator<Item = i32>,
        {
            let v1: Vec<_> = iter1.copied().collect();
            let v2: Vec<_> = iter2.collect();
            assert_eq!(v1, v2);
        }

        let set_a: OrderSet<_> = (0..3).collect();
        let set_b: OrderSet<_> = (3..6).collect();
        let set_c: OrderSet<_> = (0..6).collect();
        let set_d: OrderSet<_> = (3..9).rev().collect();

        check(set_a.par_difference(&set_a), empty());
        check(set_a.par_symmetric_difference(&set_a), empty());
        check(set_a.par_intersection(&set_a), 0..3);
        check(set_a.par_union(&set_a), 0..3);

        check(set_a.par_difference(&set_b), 0..3);
        check(set_b.par_difference(&set_a), 3..6);
        check(set_a.par_symmetric_difference(&set_b), 0..6);
        check(set_b.par_symmetric_difference(&set_a), (3..6).chain(0..3));
        check(set_a.par_intersection(&set_b), empty());
        check(set_b.par_intersection(&set_a), empty());
        check(set_a.par_union(&set_b), 0..6);
        check(set_b.par_union(&set_a), (3..6).chain(0..3));

        check(set_a.par_difference(&set_c), empty());
        check(set_c.par_difference(&set_a), 3..6);
        check(set_a.par_symmetric_difference(&set_c), 3..6);
        check(set_c.par_symmetric_difference(&set_a), 3..6);
        check(set_a.par_intersection(&set_c), 0..3);
        check(set_c.par_intersection(&set_a), 0..3);
        check(set_a.par_union(&set_c), 0..6);
        check(set_c.par_union(&set_a), 0..6);

        check(set_c.par_difference(&set_d), 0..3);
        check(set_d.par_difference(&set_c), (6..9).rev());
        check(
            set_c.par_symmetric_difference(&set_d),
            (0..3).chain((6..9).rev()),
        );
        check(
            set_d.par_symmetric_difference(&set_c),
            (6..9).rev().chain(0..3),
        );
        check(set_c.par_intersection(&set_d), 3..6);
        check(set_d.par_intersection(&set_c), (3..6).rev());
        check(set_c.par_union(&set_d), (0..6).chain((6..9).rev()));
        check(set_d.par_union(&set_c), (3..9).rev().chain(0..3));
    }
}