[go: up one dir, main page]

跳到主要内容
跳到主要内容

动态列选择

动态列选择 是一个强大但未被充分利用的 ClickHouse 功能,它允许您使用正则表达式选择列,而无需单独命名每一列。您还可以使用 APPLY 修饰符将函数应用于匹配的列,这使其在数据分析和转换任务中极其有用。

我们将通过 纽约出租车数据集 来学习如何使用此功能,您也可以在 ClickHouse SQL 游乐场 中找到该数据集。

选择匹配模式的列

让我们从一个常见场景开始:从纽约出租车数据集中选择仅包含 _amount 的列。我们可以使用 COLUMNS 表达式和正则表达式,而无需手动输入每个列名:

FROM nyc_taxi.trips
SELECT COLUMNS('.*_amount')
LIMIT 10;

在 SQL 游乐场中尝试此查询

该查询返回前 10 行,但仅返回名称匹配模式 .*_amount(以 "_amount" 结尾的任意字符)的列。

    ┌─fare_amount─┬─tip_amount─┬─tolls_amount─┬─total_amount─┐
 1. │           9 │          0 │            0 │          9.8 │
 2. │           9 │          0 │            0 │          9.8 │
 3. │         3.5 │          0 │            0 │          4.8 │
 4. │         3.5 │          0 │            0 │          4.8 │
 5. │         3.5 │          0 │            0 │          4.3 │
 6. │         3.5 │          0 │            0 │          4.3 │
 7. │         2.5 │          0 │            0 │          3.8 │
 8. │         2.5 │          0 │            0 │          3.8 │
 9. │           5 │          0 │            0 │          5.8 │
10. │           5 │          0 │            0 │          5.8 │
    └─────────────┴────────────┴──────────────┴──────────────┘

假设我们还想返回包含 feetax 的列。 我们可以更新正则表达式以包含这些内容:

SELECT COLUMNS('.*_amount|fee|tax')
FROM nyc_taxi.trips
ORDER BY rand() 
LIMIT 3;

在 SQL 游乐场中尝试此查询

   ┌─fare_amount─┬─mta_tax─┬─tip_amount─┬─tolls_amount─┬─ehail_fee─┬─total_amount─┐
1. │           5 │     0.5 │          1 │            0 │         0 │          7.8 │
2. │        12.5 │     0.5 │          0 │            0 │         0 │         13.8 │
3. │         4.5 │     0.5 │       1.66 │            0 │         0 │         9.96 │
   └─────────────┴─────────┴────────────┴──────────────┴───────────┴──────────────┘

选择多个模式

我们可以在单个查询中组合多个列模式:

SELECT 
    COLUMNS('.*_amount'),
    COLUMNS('.*_date.*')
FROM nyc_taxi.trips
LIMIT 5;

在 SQL 游乐场中尝试此查询

   ┌─fare_amount─┬─tip_amount─┬─tolls_amount─┬─total_amount─┬─pickup_date─┬─────pickup_datetime─┬─dropoff_date─┬────dropoff_datetime─┐
1. │           9 │          0 │            0 │          9.8 │  2001-01-01 │ 2001-01-01 00:01:48 │   2001-01-01 │ 2001-01-01 00:15:47 │
2. │           9 │          0 │            0 │          9.8 │  2001-01-01 │ 2001-01-01 00:01:48 │   2001-01-01 │ 2001-01-01 00:15:47 │
3. │         3.5 │          0 │            0 │          4.8 │  2001-01-01 │ 2001-01-01 00:02:08 │   2001-01-01 │ 2001-01-01 01:00:02 │
4. │         3.5 │          0 │            0 │          4.8 │  2001-01-01 │ 2001-01-01 00:02:08 │   2001-01-01 │ 2001-01-01 01:00:02 │
5. │         3.5 │          0 │            0 │          4.3 │  2001-01-01 │ 2001-01-01 00:02:26 │   2001-01-01 │ 2001-01-01 00:04:49 │
   └─────────────┴────────────┴──────────────┴──────────────┴─────────────┴─────────────────────┴──────────────┴─────────────────────┘

对所有列应用函数

我们还可以使用 APPLY 修饰符在每一列上应用函数。 例如,如果我们想找到每一列的最大值,可以运行以下查询:

SELECT COLUMNS('.*_amount|fee|tax') APPLY(max)
FROM nyc_taxi.trips;

在 SQL 游乐场中尝试此查询

   ┌─max(fare_amount)─┬─max(mta_tax)─┬─max(tip_amount)─┬─max(tolls_amount)─┬─max(ehail_fee)─┬─max(total_amount)─┐
1. │           998310 │     500000.5 │       3950588.8 │           7999.92 │           1.95 │         3950611.5 │
   └──────────────────┴──────────────┴─────────────────┴───────────────────┴────────────────┴───────────────────┘

或者,也许我们想看看平均值:

SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg)
FROM nyc_taxi.trips

在 SQL 游乐场中尝试此查询

   ┌─avg(fare_amount)─┬───────avg(mta_tax)─┬────avg(tip_amount)─┬──avg(tolls_amount)─┬──────avg(ehail_fee)─┬──avg(total_amount)─┐
1. │ 11.8044154834777 │ 0.4555942672733423 │ 1.3469850969211845 │ 0.2256511991414463 │ 3.37600560437412e-9 │ 14.423323722271563 │
   └──────────────────┴────────────────────┴────────────────────┴────────────────────┴─────────────────────┴────────────────────┘

这些值包含很多小数位,但幸运的是,我们可以通过链接函数来解决这个问题。在这种情况下,我们将应用 avg 函数,后跟 round 函数:

SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg) APPLY(round)
FROM nyc_taxi.trips;

在 SQL 游乐场中尝试此查询

   ┌─round(avg(fare_amount))─┬─round(avg(mta_tax))─┬─round(avg(tip_amount))─┬─round(avg(tolls_amount))─┬─round(avg(ehail_fee))─┬─round(avg(total_amount))─┐
1. │                      12 │                   0 │                      1 │                        0 │                     0 │                       14 │
   └─────────────────────────┴─────────────────────┴────────────────────────┴──────────────────────────┴───────────────────────┴──────────────────────────┘

但这会将平均值四舍五入为整数。如果我们想四舍五入到两位小数,我们也可以这样做。除了接受函数,APPLY 修饰符还接受一个 lambda,这给了我们灵活性,以便让 round 函数将我们的平均值四舍五入到两位小数:

SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg) APPLY(x -> round(x, 2))
FROM nyc_taxi.trips;

在 SQL 游乐场中尝试此查询

   ┌─round(avg(fare_amount), 2)─┬─round(avg(mta_tax), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(tolls_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(total_amount), 2)─┐
1. │                       11.8 │                   0.46 │                      1.35 │                        0.23 │                        0 │                       14.42 │
   └────────────────────────────┴────────────────────────┴───────────────────────────┴─────────────────────────────┴──────────────────────────┴─────────────────────────────┘

替换列

到目前为止都很好。但是假设我们想调整其中一个值,同时保持其他值不变。例如,也许我们想将总金额翻倍,并将 MTA 税除以 1.1。我们可以使用 REPLACE 修饰符来做到这一点,它将在替换一列的同时保持其他列不变。

FROM nyc_taxi.trips 
SELECT 
  COLUMNS('.*_amount|fee|tax')
  REPLACE(
    total_amount*2 AS total_amount,
    mta_tax/1.1 AS mta_tax
  ) 
  APPLY(avg)
  APPLY(col -> round(col, 2));

在 SQL 游乐场中尝试此查询

   ┌─round(avg(fare_amount), 2)─┬─round(avg(di⋯, 1.1)), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(tolls_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(mu⋯nt, 2)), 2)─┐
1. │                       11.8 │                     0.41 │                      1.35 │                        0.23 │                        0 │                    28.85 │
   └────────────────────────────┴──────────────────────────┴───────────────────────────┴─────────────────────────────┴──────────────────────────┴──────────────────────────┘

排除列

我们还可以选择通过使用 EXCEPT 修饰符来排除一个字段。例如,要删除 tolls_amount 列,我们可以写出以下查询:

FROM nyc_taxi.trips 
SELECT 
  COLUMNS('.*_amount|fee|tax') EXCEPT(tolls_amount)
  REPLACE(
    total_amount*2 AS total_amount,
    mta_tax/1.1 AS mta_tax
  ) 
  APPLY(avg)
  APPLY(col -> round(col, 2));

在 SQL 游乐场中尝试此查询

   ┌─round(avg(fare_amount), 2)─┬─round(avg(di⋯, 1.1)), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(mu⋯nt, 2)), 2)─┐
1. │                       11.8 │                     0.41 │                      1.35 │                        0 │                    28.85 │
   └────────────────────────────┴──────────────────────────┴───────────────────────────┴──────────────────────────┴──────────────────────────┘