Correct Metadata for
Abstract
This paper describes Microsoft’s submission to the first shared task on sign language translation at WMT 2022, a public competition tackling sign language to spoken language translation for Swiss German sign language. The task is very challenging due to data scarcity and an unprecedented vocabulary size of more than 20k words on the target side. Moreover, the data is taken from real broadcast news, includes native signing and covers scenarios of long videos. Motivated by recent advances in action recognition, we incorporate full body information by extracting features from a pre-trained I3D model and applying a standard transformer network. The accuracy of the system is furtherimproved by applying careful data cleaning on the target text. We obtain BLEU scores of 0.6 and 0.78 on the test and dev set respectively, which is the best score among the participants of the shared task. Also in the human evaluation the submission reaches the first place. The BLEU score is further improved to 1.08 on the dev set by applying features extracted from a lip reading model.- Anthology ID:
- 2022.wmt-1.93
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 969–976
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.93/
- DOI:
- Bibkey:
- Cite (ACL):
- Subhadeep Dey, Abhilash Pal, Cyrine Chaabani, and Oscar Koller. 2022. Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 969–976, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation (Dey et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.93.pdf
Export citation
@inproceedings{dey-etal-2022-clean,
title = "Clean Text and Full-Body Transformer: {M}icrosoft{'}s Submission to the {WMT}22 Shared Task on Sign Language Translation",
author = "Dey, Subhadeep and
Pal, Abhilash and
Chaabani, Cyrine and
Koller, Oscar",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.93/",
pages = "969--976",
abstract = "This paper describes Microsoft{'}s submission to the first shared task on sign language translation at WMT 2022, a public competition tackling sign language to spoken language translation for Swiss German sign language. The task is very challenging due to data scarcity and an unprecedented vocabulary size of more than 20k words on the target side. Moreover, the data is taken from real broadcast news, includes native signing and covers scenarios of long videos. Motivated by recent advances in action recognition, we incorporate full body information by extracting features from a pre-trained I3D model and applying a standard transformer network. The accuracy of the system is furtherimproved by applying careful data cleaning on the target text. We obtain BLEU scores of 0.6 and 0.78 on the test and dev set respectively, which is the best score among the participants of the shared task. Also in the human evaluation the submission reaches the first place. The BLEU score is further improved to 1.08 on the dev set by applying features extracted from a lip reading model."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dey-etal-2022-clean">
<titleInfo>
<title>Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Subhadeep</namePart>
<namePart type="family">Dey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhilash</namePart>
<namePart type="family">Pal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyrine</namePart>
<namePart type="family">Chaabani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oscar</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paco</namePart>
<namePart type="family">Guzman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Microsoft’s submission to the first shared task on sign language translation at WMT 2022, a public competition tackling sign language to spoken language translation for Swiss German sign language. The task is very challenging due to data scarcity and an unprecedented vocabulary size of more than 20k words on the target side. Moreover, the data is taken from real broadcast news, includes native signing and covers scenarios of long videos. Motivated by recent advances in action recognition, we incorporate full body information by extracting features from a pre-trained I3D model and applying a standard transformer network. The accuracy of the system is furtherimproved by applying careful data cleaning on the target text. We obtain BLEU scores of 0.6 and 0.78 on the test and dev set respectively, which is the best score among the participants of the shared task. Also in the human evaluation the submission reaches the first place. The BLEU score is further improved to 1.08 on the dev set by applying features extracted from a lip reading model.</abstract>
<identifier type="citekey">dey-etal-2022-clean</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.93/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>969</start>
<end>976</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation %A Dey, Subhadeep %A Pal, Abhilash %A Chaabani, Cyrine %A Koller, Oscar %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F dey-etal-2022-clean %X This paper describes Microsoft’s submission to the first shared task on sign language translation at WMT 2022, a public competition tackling sign language to spoken language translation for Swiss German sign language. The task is very challenging due to data scarcity and an unprecedented vocabulary size of more than 20k words on the target side. Moreover, the data is taken from real broadcast news, includes native signing and covers scenarios of long videos. Motivated by recent advances in action recognition, we incorporate full body information by extracting features from a pre-trained I3D model and applying a standard transformer network. The accuracy of the system is furtherimproved by applying careful data cleaning on the target text. We obtain BLEU scores of 0.6 and 0.78 on the test and dev set respectively, which is the best score among the participants of the shared task. Also in the human evaluation the submission reaches the first place. The BLEU score is further improved to 1.08 on the dev set by applying features extracted from a lip reading model. %U https://aclanthology.org/2022.wmt-1.93/ %P 969-976
Markdown (Informal)
[Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation](https://aclanthology.org/2022.wmt-1.93/) (Dey et al., WMT 2022)
- Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation (Dey et al., WMT 2022)
ACL
- Subhadeep Dey, Abhilash Pal, Cyrine Chaabani, and Oscar Koller. 2022. Clean Text and Full-Body Transformer: Microsoft’s Submission to the WMT22 Shared Task on Sign Language Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 969–976, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.