| Property |
Value |
| dbo:abstract
|
- 数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。 (ja)
- 数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。 (ja)
|
| dbo:wikiPageExternalLink
| |
| dbo:wikiPageID
| |
| dbo:wikiPageLength
|
- 16712 (xsd:nonNegativeInteger)
|
| dbo:wikiPageRevisionID
| |
| dbo:wikiPageWikiLink
| |
| prop-ja:first
|
- V. I. (ja)
- A.L. (ja)
- V. I. (ja)
- A.L. (ja)
|
| prop-ja:id
| |
| prop-ja:last
|
- Danilov (ja)
- Onishchik (ja)
- Danilov (ja)
- Onishchik (ja)
|
| prop-ja:title
|
- Coherent analytic sheaf (ja)
- Coherent algebraic sheaf (ja)
- Coherent sheaf (ja)
- Locally free (ja)
- Coherent analytic sheaf (ja)
- Coherent algebraic sheaf (ja)
- Coherent sheaf (ja)
- Locally free (ja)
|
| prop-ja:urlname
|
- Coherent_analytic_sheaf (ja)
- Coherent_algebraic_sheaf (ja)
- Coherent_sheaf (ja)
- Coherent_analytic_sheaf (ja)
- Coherent_algebraic_sheaf (ja)
- Coherent_sheaf (ja)
|
| prop-ja:wikiPageUsesTemplate
| |
| dct:subject
| |
| rdfs:comment
|
- 数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。 (ja)
- 数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。 (ja)
|
| rdfs:label
| |
| owl:sameAs
| |
| prov:wasDerivedFrom
| |
| foaf:isPrimaryTopicOf
| |
| is dbo:wikiPageRedirects
of | |
| is dbo:wikiPageWikiLink
of | |
| is owl:sameAs
of | |
| is foaf:primaryTopic
of | |