[go: up one dir, main page]

位相空間論において、位相空間 X の点 x が X の部分集合 S の孤立点(こりつてん、英: isolated point)であるとは、x が S に属し、かつ、x の近傍であって x 以外の S の点がひとつも含まれないようなものが存在することをいう。 特に X がユークリッド空間(あるいはもっと一般の距離空間)の場合に即して言えば、x が S の孤立点であるとは、x を中心とする開球体のうち x 以外の S の点を含まないものが存在するということを意味する。 別な言葉で言えば、点 x ∈ S が S において孤立するための必要十分な条件は、x が S の集積点とはならないことである。 孤立点のみから成る集合を離散集合 (discrete set) という。ユークリッド空間における離散部分集合は可算である(これは有理数全体のなす集合 Q が実数全体のなす集合 R において稠密であるという事実に基づけば、ユークリッド空間における部分集合の各点を孤立させるというのは、有理数を座標に持つ点(有理点)からなる集合に一対一に写すという意味になるためである)。一方、可算だが離散的でない集合が存在しうる(例えば有理数全体の集合 Q に差の絶対値を距離函数とした距離空間)。離散空間も参照。 孤立点を持たない集合はであるという。孤立点を持たない閉集合をという。

Property Value
dbo:abstract
  • 位相空間論において、位相空間 X の点 x が X の部分集合 S の孤立点(こりつてん、英: isolated point)であるとは、x が S に属し、かつ、x の近傍であって x 以外の S の点がひとつも含まれないようなものが存在することをいう。 特に X がユークリッド空間(あるいはもっと一般の距離空間)の場合に即して言えば、x が S の孤立点であるとは、x を中心とする開球体のうち x 以外の S の点を含まないものが存在するということを意味する。 別な言葉で言えば、点 x ∈ S が S において孤立するための必要十分な条件は、x が S の集積点とはならないことである。 孤立点のみから成る集合を離散集合 (discrete set) という。ユークリッド空間における離散部分集合は可算である(これは有理数全体のなす集合 Q が実数全体のなす集合 R において稠密であるという事実に基づけば、ユークリッド空間における部分集合の各点を孤立させるというのは、有理数を座標に持つ点(有理点)からなる集合に一対一に写すという意味になるためである)。一方、可算だが離散的でない集合が存在しうる(例えば有理数全体の集合 Q に差の絶対値を距離函数とした距離空間)。離散空間も参照。 孤立点を持たない集合はであるという。孤立点を持たない閉集合をという。 「孤立点の数」というのは位相的性質(位相不変量)の一種である。すなわち、位相空間 X と Y が互いに同相ならば、それらの持つ孤立点の数は必ず等しい。 (ja)
  • 位相空間論において、位相空間 X の点 x が X の部分集合 S の孤立点(こりつてん、英: isolated point)であるとは、x が S に属し、かつ、x の近傍であって x 以外の S の点がひとつも含まれないようなものが存在することをいう。 特に X がユークリッド空間(あるいはもっと一般の距離空間)の場合に即して言えば、x が S の孤立点であるとは、x を中心とする開球体のうち x 以外の S の点を含まないものが存在するということを意味する。 別な言葉で言えば、点 x ∈ S が S において孤立するための必要十分な条件は、x が S の集積点とはならないことである。 孤立点のみから成る集合を離散集合 (discrete set) という。ユークリッド空間における離散部分集合は可算である(これは有理数全体のなす集合 Q が実数全体のなす集合 R において稠密であるという事実に基づけば、ユークリッド空間における部分集合の各点を孤立させるというのは、有理数を座標に持つ点(有理点)からなる集合に一対一に写すという意味になるためである)。一方、可算だが離散的でない集合が存在しうる(例えば有理数全体の集合 Q に差の絶対値を距離函数とした距離空間)。離散空間も参照。 孤立点を持たない集合はであるという。孤立点を持たない閉集合をという。 「孤立点の数」というのは位相的性質(位相不変量)の一種である。すなわち、位相空間 X と Y が互いに同相ならば、それらの持つ孤立点の数は必ず等しい。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1895999 (xsd:integer)
dbo:wikiPageLength
  • 3365 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 70173300 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Isolated Point (ja)
  • Isolated Point (ja)
prop-en:urlname
  • IsolatedPoint (ja)
  • IsolatedPoint (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 位相空間論において、位相空間 X の点 x が X の部分集合 S の孤立点(こりつてん、英: isolated point)であるとは、x が S に属し、かつ、x の近傍であって x 以外の S の点がひとつも含まれないようなものが存在することをいう。 特に X がユークリッド空間(あるいはもっと一般の距離空間)の場合に即して言えば、x が S の孤立点であるとは、x を中心とする開球体のうち x 以外の S の点を含まないものが存在するということを意味する。 別な言葉で言えば、点 x ∈ S が S において孤立するための必要十分な条件は、x が S の集積点とはならないことである。 孤立点のみから成る集合を離散集合 (discrete set) という。ユークリッド空間における離散部分集合は可算である(これは有理数全体のなす集合 Q が実数全体のなす集合 R において稠密であるという事実に基づけば、ユークリッド空間における部分集合の各点を孤立させるというのは、有理数を座標に持つ点(有理点)からなる集合に一対一に写すという意味になるためである)。一方、可算だが離散的でない集合が存在しうる(例えば有理数全体の集合 Q に差の絶対値を距離函数とした距離空間)。離散空間も参照。 孤立点を持たない集合はであるという。孤立点を持たない閉集合をという。 (ja)
  • 位相空間論において、位相空間 X の点 x が X の部分集合 S の孤立点(こりつてん、英: isolated point)であるとは、x が S に属し、かつ、x の近傍であって x 以外の S の点がひとつも含まれないようなものが存在することをいう。 特に X がユークリッド空間(あるいはもっと一般の距離空間)の場合に即して言えば、x が S の孤立点であるとは、x を中心とする開球体のうち x 以外の S の点を含まないものが存在するということを意味する。 別な言葉で言えば、点 x ∈ S が S において孤立するための必要十分な条件は、x が S の集積点とはならないことである。 孤立点のみから成る集合を離散集合 (discrete set) という。ユークリッド空間における離散部分集合は可算である(これは有理数全体のなす集合 Q が実数全体のなす集合 R において稠密であるという事実に基づけば、ユークリッド空間における部分集合の各点を孤立させるというのは、有理数を座標に持つ点(有理点)からなる集合に一対一に写すという意味になるためである)。一方、可算だが離散的でない集合が存在しうる(例えば有理数全体の集合 Q に差の絶対値を距離函数とした距離空間)。離散空間も参照。 孤立点を持たない集合はであるという。孤立点を持たない閉集合をという。 (ja)
rdfs:label
  • 孤立点 (ja)
  • 孤立点 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of