[go: up one dir, main page]

数学の微分幾何学において、一般化された複素構造(いっぱんかされたふくそこうぞう、英: generalized complex structure)とは、可微分多様体の持つある種の性質をいう。その特別な場合として複素構造やシンプレクティック構造が現れることがある。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年のロベルト・ダイクラーフ、、とカムラン・ヴァッファの位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。

Property Value
dbo:abstract
  • 数学の微分幾何学において、一般化された複素構造(いっぱんかされたふくそこうぞう、英: generalized complex structure)とは、可微分多様体の持つある種の性質をいう。その特別な場合として複素構造やシンプレクティック構造が現れることがある。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年のロベルト・ダイクラーフ、、とカムラン・ヴァッファの位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。 (ja)
  • 数学の微分幾何学において、一般化された複素構造(いっぱんかされたふくそこうぞう、英: generalized complex structure)とは、可微分多様体の持つある種の性質をいう。その特別な場合として複素構造やシンプレクティック構造が現れることがある。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年のロベルト・ダイクラーフ、、とカムラン・ヴァッファの位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2617093 (xsd:integer)
dbo:wikiPageLength
  • 14232 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92378609 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の微分幾何学において、一般化された複素構造(いっぱんかされたふくそこうぞう、英: generalized complex structure)とは、可微分多様体の持つある種の性質をいう。その特別な場合として複素構造やシンプレクティック構造が現れることがある。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年のロベルト・ダイクラーフ、、とカムラン・ヴァッファの位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。 (ja)
  • 数学の微分幾何学において、一般化された複素構造(いっぱんかされたふくそこうぞう、英: generalized complex structure)とは、可微分多様体の持つある種の性質をいう。その特別な場合として複素構造やシンプレクティック構造が現れることがある。一般化された複素構造は、2002年ににより導入され、さらに彼の学生であったとにより発展した。 最初は、この構造は微分形式の汎函数による特徴付けというヒッチンのプログラムから発生した。この構造は、2004年のロベルト・ダイクラーフ、、とカムラン・ヴァッファの位相弦の理論は位相的M-理論の特別な場合ではないかという提案の基礎となった。今日、一般化された複素構造は、物理的な弦理論で超対称性をもつで主要な役目を果たしている。フラックスコンパクト化は、10次元の物理を4-次元の我々のような世界へ関連付けるのであるが、(ツイストする必要がある)一般化された複素構造を必要とする。 (ja)
rdfs:label
  • 一般化された複素構造 (ja)
  • 一般化された複素構造 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of