数学において、ヤング束は全ての自然数の分割からなる束である。「On quantitative substitutional analysis」などで対称群の表現論を発展させた、にちなんで名付けられた。ヤングの理論において、現在ではヤング図形と呼ばれる対象やその半順序は、決定的な重要な役割を果たした。によって、ヤング束は差分半順序集合の最も単純な例とされるなど、ヤング束は代数的組合せ論においてよく現れる。そして、アフィンリー代数の結晶基底とも密接に関連している。