| Property |
Value |
| dbo:abstract
|
- 論理式のエルブラン化(英: Herbrandization)とは、論理式のスコーレム化の双対となる構成である。ジャック・エルブランに因む。トアルフ・スコーレムは、レーヴェンハイム–スコーレムの定理(Skolem 1920)の証明の一部として、冠頭標準形の論理式のスコーレム化を考えていた。エルブランは、エルブランの定理(Herbrand 1930)を証明するため、その双対概念であるエルブラン化(冠頭標準形以外の論理式にも適用できるよう一般化されたもの)を用いた。 結果の論理式は元々の論理式と論理的同値である必要はない。充足可能性を保つスコーレム化と同様、スコーレム化の双対であるエルブラン化は論理的妥当性を保つ:結果の論理式が妥当であるのは、元々の論理式が妥当であるとき、かつそのときに限る。 (ja)
- 論理式のエルブラン化(英: Herbrandization)とは、論理式のスコーレム化の双対となる構成である。ジャック・エルブランに因む。トアルフ・スコーレムは、レーヴェンハイム–スコーレムの定理(Skolem 1920)の証明の一部として、冠頭標準形の論理式のスコーレム化を考えていた。エルブランは、エルブランの定理(Herbrand 1930)を証明するため、その双対概念であるエルブラン化(冠頭標準形以外の論理式にも適用できるよう一般化されたもの)を用いた。 結果の論理式は元々の論理式と論理的同値である必要はない。充足可能性を保つスコーレム化と同様、スコーレム化の双対であるエルブラン化は論理的妥当性を保つ:結果の論理式が妥当であるのは、元々の論理式が妥当であるとき、かつそのときに限る。 (ja)
|
| dbo:wikiPageID
| |
| dbo:wikiPageLength
|
- 2467 (xsd:nonNegativeInteger)
|
| dbo:wikiPageRevisionID
| |
| dbo:wikiPageWikiLink
| |
| prop-en:wikiPageUsesTemplate
| |
| dct:subject
| |
| rdfs:comment
|
- 論理式のエルブラン化(英: Herbrandization)とは、論理式のスコーレム化の双対となる構成である。ジャック・エルブランに因む。トアルフ・スコーレムは、レーヴェンハイム–スコーレムの定理(Skolem 1920)の証明の一部として、冠頭標準形の論理式のスコーレム化を考えていた。エルブランは、エルブランの定理(Herbrand 1930)を証明するため、その双対概念であるエルブラン化(冠頭標準形以外の論理式にも適用できるよう一般化されたもの)を用いた。 結果の論理式は元々の論理式と論理的同値である必要はない。充足可能性を保つスコーレム化と同様、スコーレム化の双対であるエルブラン化は論理的妥当性を保つ:結果の論理式が妥当であるのは、元々の論理式が妥当であるとき、かつそのときに限る。 (ja)
- 論理式のエルブラン化(英: Herbrandization)とは、論理式のスコーレム化の双対となる構成である。ジャック・エルブランに因む。トアルフ・スコーレムは、レーヴェンハイム–スコーレムの定理(Skolem 1920)の証明の一部として、冠頭標準形の論理式のスコーレム化を考えていた。エルブランは、エルブランの定理(Herbrand 1930)を証明するため、その双対概念であるエルブラン化(冠頭標準形以外の論理式にも適用できるよう一般化されたもの)を用いた。 結果の論理式は元々の論理式と論理的同値である必要はない。充足可能性を保つスコーレム化と同様、スコーレム化の双対であるエルブラン化は論理的妥当性を保つ:結果の論理式が妥当であるのは、元々の論理式が妥当であるとき、かつそのときに限る。 (ja)
|
| rdfs:label
| |
| prov:wasDerivedFrom
| |
| foaf:isPrimaryTopicOf
| |
| is dbo:wikiPageWikiLink
of | |
| is owl:sameAs
of | |
| is foaf:primaryTopic
of | |