[go: up one dir, main page]

Manipulating Data with dplyr

Overview

dplyr is an R package for working with structured data both in and outside of R. dplyr makes data manipulation for R users easy, consistent, and performant. With dplyr as an interface to manipulating Spark DataFrames, you can:

  • Select, filter, and aggregate data
  • Use window functions (e.g. for sampling)
  • Perform joins on DataFrames
  • Collect data from Spark into R

Statements in dplyr can be chained together using pipes defined by the magrittr R package. dplyr also supports non-standard evalution of its arguments. For more information on dplyr, see the introduction, a guide for connecting to databases, and a variety of vignettes.

Flights Data

This guide will demonstrate some of the basic data manipulation verbs of dplyr by using data from the nycflights13 R package. This package contains data for all 336,776 flights departing New York City in 2013. It also includes useful metadata on airlines, airports, weather, and planes. The data comes from the US Bureau of Transportation Statistics, and is documented in ?nycflights13

Connect to the cluster and copy the flights data using the copy_to() function. Caveat: The flight data in nycflights13 is convenient for dplyr demonstrations because it is small, but in practice large data should rarely be copied directly from R objects.

library(sparklyr)
library(dplyr)
library(ggplot2)

sc <- spark_connect(master="local")

flights_tbl <- copy_to(sc, nycflights13::flights, "flights")

airlines_tbl <- copy_to(sc, nycflights13::airlines, "airlines")

dplyr Verbs

Verbs are dplyr commands for manipulating data. When connected to a Spark DataFrame, dplyr translates the commands into Spark SQL statements. Remote data sources use exactly the same five verbs as local data sources. Here are the five verbs with their corresponding SQL commands:

  • select() ~ SELECT
  • filter() ~ WHERE
  • arrange() ~ ORDER
  • summarise() ~ aggregators: sum, min, sd, etc.
  • mutate() ~ operators: +, *, log, etc.
select(flights_tbl, year:day, arr_delay, dep_delay)
#> # Source:   SQL [?? x 5]
#> # Database: spark_connection
#>     year month   day arr_delay dep_delay
#>    <int> <int> <int>     <dbl>     <dbl>
#>  1  2013     1     1        11         2
#>  2  2013     1     1        20         4
#>  3  2013     1     1        33         2
#>  4  2013     1     1       -18        -1
#>  5  2013     1     1       -25        -6
#>  6  2013     1     1        12        -4
#>  7  2013     1     1        19        -5
#>  8  2013     1     1       -14        -3
#>  9  2013     1     1        -8        -3
#> 10  2013     1     1         8        -2
#> # ℹ more rows
filter(flights_tbl, dep_delay > 1000)
#> # Source:   SQL [?? x 19]
#> # Database: spark_connection
#>    year month   day dep_time sched_dep_time dep_delay
#>   <int> <int> <int>    <int>          <int>     <dbl>
#> 1  2013     1     9      641            900      1301
#> 2  2013     1    10     1121           1635      1126
#> 3  2013     6    15     1432           1935      1137
#> 4  2013     7    22      845           1600      1005
#> 5  2013     9    20     1139           1845      1014
#> # ℹ 13 more variables: arr_time <int>,
#> #   sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
#> #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> #   air_time <dbl>, distance <dbl>, hour <dbl>,
#> #   minute <dbl>, time_hour <dttm>
arrange(flights_tbl, desc(dep_delay))
#> # Source:     SQL [?? x 19]
#> # Database:   spark_connection
#> # Ordered by: desc(dep_delay)
#>     year month   day dep_time sched_dep_time dep_delay
#>    <int> <int> <int>    <int>          <int>     <dbl>
#>  1  2013     1     9      641            900      1301
#>  2  2013     6    15     1432           1935      1137
#>  3  2013     1    10     1121           1635      1126
#>  4  2013     9    20     1139           1845      1014
#>  5  2013     7    22      845           1600      1005
#>  6  2013     4    10     1100           1900       960
#>  7  2013     3    17     2321            810       911
#>  8  2013     6    27      959           1900       899
#>  9  2013     7    22     2257            759       898
#> 10  2013    12     5      756           1700       896
#> # ℹ more rows
#> # ℹ 13 more variables: arr_time <int>,
#> #   sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
#> #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> #   air_time <dbl>, distance <dbl>, hour <dbl>,
#> #   minute <dbl>, time_hour <dttm>
summarise(
  flights_tbl, 
  mean_dep_delay = mean(dep_delay, na.rm = TRUE)
  )
#> # Source:   SQL [?? x 1]
#> # Database: spark_connection
#>   mean_dep_delay
#>            <dbl>
#> 1           12.6
mutate(flights_tbl, speed = distance / air_time * 60)
#> # Source:   SQL [?? x 20]
#> # Database: spark_connection
#>     year month   day dep_time sched_dep_time dep_delay
#>    <int> <int> <int>    <int>          <int>     <dbl>
#>  1  2013     1     1      517            515         2
#>  2  2013     1     1      533            529         4
#>  3  2013     1     1      542            540         2
#>  4  2013     1     1      544            545        -1
#>  5  2013     1     1      554            600        -6
#>  6  2013     1     1      554            558        -4
#>  7  2013     1     1      555            600        -5
#>  8  2013     1     1      557            600        -3
#>  9  2013     1     1      557            600        -3
#> 10  2013     1     1      558            600        -2
#> # ℹ more rows
#> # ℹ 14 more variables: arr_time <int>,
#> #   sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
#> #   flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> #   air_time <dbl>, distance <dbl>, hour <dbl>,
#> #   minute <dbl>, time_hour <dttm>, speed <dbl>

Laziness

When working with databases, dplyr tries to be as lazy as possible:

  • It never pulls data into R unless you explicitly ask for it.

  • It delays doing any work until the last possible moment: it collects together everything you want to do and then sends it to the database in one step.

For example, take the following code:

c1 <- filter(
  flights_tbl, 
  day == 17, month == 5, carrier %in% c('UA', 'WN', 'AA', 'DL')
  )

c2 <- select(c1, year, month, day, carrier, dep_delay, air_time, distance)

c3 <- mutate(c2, air_time_hours = air_time / 60)

c4 <- arrange(c3, year, month, day, carrier)

This sequence of operations never actually touches the database. It’s not until you ask for the data (e.g. by printing c4) that dplyr requests the results from the database.

c4
#> # Source:     SQL [?? x 8]
#> # Database:   spark_connection
#> # Ordered by: year, month, day, carrier
#>     year month   day carrier dep_delay air_time distance
#>    <int> <int> <int> <chr>       <dbl>    <dbl>    <dbl>
#>  1  2013     5    17 AA              2       35      187
#>  2  2013     5    17 AA             -4      313     2475
#>  3  2013     5    17 AA             -3      117      733
#>  4  2013     5    17 AA             -2      294     2248
#>  5  2013     5    17 AA              6      184     1389
#>  6  2013     5    17 AA             -6      143     1096
#>  7  2013     5    17 AA              0      196     1598
#>  8  2013     5    17 AA             -2      146     1085
#>  9  2013     5    17 AA             -5      314     2475
#> 10  2013     5    17 AA             -3      193     1598
#> # ℹ more rows
#> # ℹ 1 more variable: air_time_hours <dbl>

Piping

You can use magrittr pipes to write cleaner syntax. Using the same example from above, you can write a much cleaner version like this:

c4 <- flights_tbl %>%
  filter(month == 5, day == 17, carrier %in% c('UA', 'WN', 'AA', 'DL')) %>%
  select(carrier, dep_delay, air_time, distance) %>%
  mutate(air_time_hours = air_time / 60) %>% 
  arrange(carrier) 

Grouping

The group_by() function corresponds to the GROUP BY statement in SQL.

flights_tbl %>% 
  group_by(carrier) %>%
  summarize(
    count = n(), 
    mean_dep_delay = mean(dep_delay, na.rm = FALSE)
    )
#> Warning: Missing values are always removed in SQL aggregation functions.
#> Use `na.rm = TRUE` to silence this warning
#> This warning is displayed once every 8 hours.
#> # Source:   SQL [?? x 3]
#> # Database: spark_connection
#>    carrier count mean_dep_delay
#>    <chr>   <dbl>          <dbl>
#>  1 WN      12275          17.7 
#>  2 VX       5162          12.9 
#>  3 YV        601          19.0 
#>  4 DL      48110           9.26
#>  5 OO         32          12.6 
#>  6 B6      54635          13.0 
#>  7 F9        685          20.2 
#>  8 EV      54173          20.0 
#>  9 US      20536           3.78
#> 10 UA      58665          12.1 
#> 11 MQ      26397          10.6 
#> 12 AA      32729           8.59
#> 13 FL       3260          18.7 
#> 14 AS        714           5.80
#> 15 9E      18460          16.7 
#> 16 HA        342           4.90

Collecting to R

You can copy data from Spark into R’s memory by using collect().

carrierhours <- collect(c4)

collect() executes the Spark query and returns the results to R for further analysis and visualization.

# Test the significance of pairwise differences and plot the results

with(carrierhours, pairwise.t.test(air_time, carrier))
#> 
#>  Pairwise comparisons using t tests with pooled SD 
#> 
#> data:  air_time and carrier 
#> 
#>    AA      DL      UA     
#> DL 0.25057 -       -      
#> UA 0.07957 0.00044 -      
#> WN 0.07957 0.23488 0.00041
#> 
#> P value adjustment method: holm
carrierhours %>% 
  ggplot() + 
  geom_boxplot(aes(carrier, air_time_hours))

SQL Translation

It’s relatively straightforward to translate R code to SQL (or indeed to any programming language) when doing simple mathematical operations of the form you normally use when filtering, mutating and summarizing. dplyr knows how to convert the following R functions to Spark SQL:

# Basic math operators
+, -, *, /, %%, ^
  
# Math functions
abs, acos, asin, asinh, atan, atan2, ceiling, cos, cosh, exp, floor, log, 
log10, round, sign, sin, sinh, sqrt, tan, tanh

# Logical comparisons
<, <=, !=, >=, >, ==, %in%

# Boolean operations
&, &&, |, ||, !

# Character functions
paste, tolower, toupper, nchar

# Casting
as.double, as.integer, as.logical, as.character, as.date

# Basic aggregations
mean, sum, min, max, sd, var, cor, cov, n

dplyr supports Spark SQL window functions. Window functions are used in conjunction with mutate and filter to solve a wide range of problems. You can compare the dplyr syntax to the query it has generated by using dplyr::show_query().

# Rank each flight within a daily
ranked <- flights_tbl %>%
  group_by(year, month, day) %>%
  select(dep_delay) %>% 
  mutate(rank = rank(desc(dep_delay)))
#> Adding missing grouping variables: `year`, `month`, and `day`

dplyr::show_query(ranked)
#> <SQL>
#> SELECT
#>   `year`,
#>   `month`,
#>   `day`,
#>   `dep_delay`,
#>   CASE
#> WHEN (NOT((`dep_delay` IS NULL))) THEN RANK() OVER (PARTITION BY `year`, `month`, `day`, (CASE WHEN ((`dep_delay` IS NULL)) THEN 1 ELSE 0 END) ORDER BY `dep_delay` DESC)
#> END AS `rank`
#> FROM `flights`
ranked 
#> # Source:   SQL [?? x 5]
#> # Database: spark_connection
#> # Groups:   year, month, day
#>     year month   day dep_delay  rank
#>    <int> <int> <int>     <dbl> <int>
#>  1  2013     1     1       853     1
#>  2  2013     1     1       379     2
#>  3  2013     1     1       290     3
#>  4  2013     1     1       285     4
#>  5  2013     1     1       260     5
#>  6  2013     1     1       255     6
#>  7  2013     1     1       216     7
#>  8  2013     1     1       192     8
#>  9  2013     1     1       157     9
#> 10  2013     1     1       155    10
#> # ℹ more rows

Peforming Joins

It’s rare that a data analysis involves only a single table of data. In practice, you’ll normally have many tables that contribute to an analysis, and you need flexible tools to combine them. In dplyr, there are three families of verbs that work with two tables at a time:

  • Mutating joins, which add new variables to one table from matching rows in another.

  • Filtering joins, which filter observations from one table based on whether or not they match an observation in the other table.

  • Set operations, which combine the observations in the data sets as if they were set elements.

All two-table verbs work similarly. The first two arguments are x and y, and provide the tables to combine. The output is always a new table with the same type as x.

flights_tbl %>% 
  left_join(airlines_tbl, by = "carrier") %>% 
  select(name, flight, dep_time)
#> # Source:   SQL [?? x 3]
#> # Database: spark_connection
#>    name                 flight dep_time
#>    <chr>                 <int>    <int>
#>  1 Delta Air Lines Inc.    461      554
#>  2 Delta Air Lines Inc.   1919      602
#>  3 JetBlue Airways         725      544
#>  4 JetBlue Airways         507      555
#>  5 JetBlue Airways          79      557
#>  6 JetBlue Airways          49      558
#>  7 JetBlue Airways          71      558
#>  8 JetBlue Airways        1806      559
#>  9 JetBlue Airways         371      600
#> 10 JetBlue Airways         343      601
#> # ℹ more rows

Sampling

You can use sample_n() and sample_frac() to take a random sample of rows: use sample_n() for a fixed number and sample_frac() for a fixed fraction.

sample_n(flights_tbl, 10) %>% 
  select(1:4)
#> # Source:   SQL [?? x 4]
#> # Database: spark_connection
#>     year month   day dep_time
#>    <int> <int> <int>    <int>
#>  1  2013    10    25     1419
#>  2  2013    12    31      616
#>  3  2013    12    28     1333
#>  4  2013     2     3     1018
#>  5  2013     6    12     1953
#>  6  2013    10    11     1055
#>  7  2013     2    27      700
#>  8  2013     4    20      711
#>  9  2013     7    24     1818
#> 10  2013     9     9     1809
sample_frac(flights_tbl, 0.01) %>% 
  count()
#> # Source:   SQL [?? x 1]
#> # Database: spark_connection
#>       n
#>   <dbl>
#> 1  3368

Hive Functions

Many of Hive’s built-in functions (UDF) and built-in aggregate functions (UDAF) can be called inside dplyr’s mutate and summarize. The Languange Reference UDF page provides the list of available functions.

The following example uses the datediff and current_date Hive UDFs to figure the difference between the flight_date and the current system date:

flights_tbl %>% 
  mutate(
    flight_date = paste(year,month,day,sep="-"),
    days_since = datediff(current_date(), flight_date)
    ) %>%
  group_by(flight_date,days_since) %>%
  count() %>%
  arrange(-days_since)
#> # Source:     SQL [?? x 3]
#> # Database:   spark_connection
#> # Groups:     flight_date, days_since
#> # Ordered by: -days_since
#>    flight_date days_since     n
#>    <chr>            <int> <dbl>
#>  1 2013-1-1          4664   842
#>  2 2013-1-2          4663   943
#>  3 2013-1-3          4662   914
#>  4 2013-1-4          4661   915
#>  5 2013-1-5          4660   720
#>  6 2013-1-6          4659   832
#>  7 2013-1-7          4658   933
#>  8 2013-1-8          4657   899
#>  9 2013-1-9          4656   902
#> 10 2013-1-10         4655   932
#> # ℹ more rows
spark_disconnect(sc)