1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/*
* poly.i --
*
* 1D and 2D polynomial routines (evaluation, fit, ...).
*
* Copyright and warranty:
* Copyright (c) 1999, Eric THIEBAUT (thiebaut@obs.univ-lyon1.fr, Centre
* de Recherche Astrophysique de Lyon, 9 avenue Charles Andre, F-69561
* Saint Genis Laval Cedex).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details (to receive a copy of the GNU
* General Public License, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA).
*
* History:
* $Id: poly.i,v 1.1.1.1 2007/12/11 23:55:13 frigaut Exp $
* $Log: poly.i,v $
* Revision 1.1.1.1 2007/12/11 23:55:13 frigaut
* Initial Import - yorick-yutils
*
*/
func poly1(x, c)
/* DOCUMENT: poly1(x, c);
Returns value of the 1D polynomial:
C(1) + C(2)*X + C(3)*X^2 + ...
SEE ALSO: poly, poly1_deriv, poly1_fit, poly2. */
{
y= c((i= numberof(c)));
while (--i>0) y= x*y + c(i);
return y;
}
func poly1_deriv(x, c)
/* DOCUMENT: y= poly1_deriv(x, c);
Returns value of the derivative of the 1D polynomial:
C(1) + C(2)*X + C(3)*X^2 + ...
in other words:
Y= C(2) + 2*C(3)*X + 3*C(4)*X^2 + ...
SEE ALSO: poly1. */
{
if ((n= numberof(c))==1) return array(0.0, dimsof(x));
return poly1(x, c(2:)*double(indgen(n-1)));
}
/*---------------------------------------------------------------------------*/
func poly2(x1, x2, c)
/* DOCUMENT: poly2(x1, x2, c);
Returns value of the 2D polynomial:
C(1) + C(2)*X1 + C(3)*X2 + C(4)*X1^2 + C(5)*X1*X2 + C(6)*X2^2 + ...
X1 and X2 must be conformable. For a 2D polynomial of degree 1, 2 or 3
(3, 6 and 10 coefficients respectively) poly2 uses hard-coded
factorized expressions to minimize the number of operations.
SEE ALSO: poly, poly1. */
{
n= numberof(c);
/* Optimized factorizations (just cut out this block if you don't want to
use or don't trust the following expressions). */
#if 1
if (n <= 10) {
if (n==3) return c(1)+c(2)*x1+c(3)*x2;
if ((d1= dimsof(x1))(1)==(d2= dimsof(x2))(1) && allof(d1==d2)) {
if (n==6) return c(1)+(c(2)+c(5)*x2+c(4)*x1)*x1+(c(3)+c(6)*x2)*x2;
if (n==10) return c(1)+(c(2)+c(5)*x2+(c(4)+c(7)*x1+c(8)*x2)*x1)*x1+
(c(3)+(c(6)+c(9)*x1+c(10)*x2)*x2)*x2;
} else {
/* Use a different factorization to optimize number of operations. */
if (n==6) return c(1)+(c(2)+c(4)*x1)*x1+c(5)*x1*x2+(c(3)+c(6)*x2)*x2;
if (n==10) return c(1)+(c(2)+(c(4)+c(7)*x1)*x1)*x1+
(c(3)+(c(6)+c(10)*x2)*x2)*x2+
(c(5)+c(8)*x1)*x1*x2+c(9)*x2*x2*x1;
}
}
#endif
/* For a 2D polynomial of degree M, there are N=(M+1)*(M+2)/2 coefficients.
=> M = (sqrt(8*N+1)-3)/2 */
m= long((sqrt(8*n+1)-2)/2); /* -2 (instead of -3) to get nearest integer */
/* Pre-compute powers of X1 and X2. */
xp1= array(pointer, m); xp1(1)= &(tmp1= x1);
xp2= array(pointer, m); xp2(1)= &(tmp2= x2);
for (k=2 ; k<=m ; k++) {
xp1(k)= &(tmp1*= x1);
xp2(k)= &(tmp2*= x2);
}
tmp1= tmp2= x1= x2= [];
/* Current degree is: K=K1+K2=0..M; K1, K2 are the powers of X1 and X2. */
y= c((i= 1)); /* K=0, K1=0, K2=0 */
for (k=1 ; k<=m ; k++) {
y+= c(++i) * (*xp1(k)); /* K1=K, K2=0 */
for (k1=k-1, k2=1 ; k1>0 ; k1--, k2++)
y+= c(++i) * (*xp1(k1)) * (*xp2(k2)); /* K1=K-1..1, K2=1..K-1 */
y+= c(++i) * (*xp2(k)); /* K1=0, K2=K */
}
if (i!=n)
error, "bad number of coefficients";
return y;
}
func poly2_deriv(x1, x2, c)
/* DOCUMENT drv= poly2_deriv(x1, x2, c);
Return derivatives of 2D polynomial poly2(X1,X2,C) with respect
to X1 and X2:
DRV(..,1)= d poly2(X1,X2,C) / d X1
DRV(..,2)= d poly2(X1,X2,C) / d X2
BUGS: Only works for polynomials of degree 1 to 4 (needs factorization
for degree 4). */
{
dims= dimsof(x,y);
dims(1)++;
grow, dims, 2;
drv= array(double, dims);
n= numberof(c);
if (n==14) {
drv(..,1)= c(2) + 2*c(4)*x + c(5)*y + 3*c(7)*x*x + 2*c(8)*x*y + c(9)*y*y +
4*c(11)*x*x*x + 3*c(12)*x*x*y + 2*c(13)*x*y*y + c(14)*y*y*y;
drv(..,2)= c(3) + c(5)*x + 2*c(6)*y + c(8)*x*x + 2*c(9)*x*y + 3*c(10)*y*y +
c(12)*x*x*x + 2*c(13)*x*x*y + 3*c(14)*x*y*y + 4*c(15)*y*y*y;
} else if (n==10) {
drv(..,1)= c(2)+(2*c(4)+3*c(7)*x+2*c(8)*y)*x+(c(5)+c(9)*y)*y;
drv(..,2)= c(3)+(c(5)+c(8)*x+2*c(9)*y)*x+(2*c(6)+3*c(10)*y)*y;
} else if (n==6) {
drv(..,1)= c(2)+2*c(4)*x+c(5)*y;
drv(..,2)= c(3)+c(5)*x+2*c(6)*y;
} else if (n==2) {
drv(..,1)= c(2);
drv(..,2)= c(3);
} else {
error, "bad number of coefficients";
}
return drv;
}
/*---------------------------------------------------------------------------*/
/* NOTES ABOUT LEAST SQUARES FIT:
* Chi2 = Sum_k( weight_k * (model_k - data_k)^2 )
*
* d Chi2 d model_k
* ------- = 2 Sum_k( weight_k * (model_k - data_k) * --------- )
* d alpha d alpha
*
*/
func poly1_fit(y, x, m, w)
/* DOCUMENT: c= poly1_fit(y, x, m);
-or- c= poly1_fit(y, x, m, w);
Returns coefficients of the 1D polynomial of degree M:
C(1) + C(2)*X + C(3)*X^2 + ... + C(M+1)*X^M
which best fits Y in the least squares sense:
C = arg min sum(W*(poly1(X,C) - Y)^2)
The weights W are optional (by default, W=1.0). The array X and Y must
have the same shape.
SEE ALSO: poly1. */
{
if (structof(x)!=double) x= double(x);
n= m+1; /* number of coefficients */
/* Compute powers of X. */
xp= array(pointer, n);
if (is_void(w)) {
xp(1)= &array(1.0);
if (n>1) {
xp(2)= &(tmp= x);
for (i=3 ; i<=n ; i++) {
xp(i)= &(tmp*= x);
}
}
} else {
/* Apply weights (if any, also do apply scalar weight to let the user
rescale the problem in case of overflows). */
xp(1)= &(w= sqrt(w)); /* raise a SIGFPE if any of W < 0 */
if (n>1) {
xp(2)= &(w * (tmp= x));
for (i=3 ; i<=n ; i++) {
xp(i)= &(w * (tmp*= x));
}
}
y*= w;
w= [];
}
tmp= x= [];
/* Solve. */
return solve_lfit(y, xp);
}
/*---------------------------------------------------------------------------*/
func poly2_fit(y, x1, x2, m, w)
/* DOCUMENT: c= poly2_fit(y, x1, x2, m);
-or- c= poly2_fit(y, x1, x2, m, w);
Returns the (M+1)*(M+2)/2 coefficients of the 2D polynomial of degree M:
C(1) + C(2)*X1 + C(3)*X2 + C(4)*X1^2 + C(5)*X1*X2 + C(6)*X2^2 + ...
which best fits Y in the least squares sense:
C = arg min sum(W*(poly2(X1,X2,C) - Y)^2)
The weights W are optional (by default, W=1.0).
SEE ALSO: poly2. */
{
if (structof(x1)!=double) x1= double(x1);
if (structof(x2)!=double) x2= double(x2);
/* Pre-compute powers of X1 and X2. */
xp1= array(pointer, m); xp1(1)= &(tmp1= x1);
xp2= array(pointer, m); xp2(1)= &(tmp2= x2);
for (k=2 ; k<=m ; k++) {
xp1(k)= &(tmp1*= x1);
xp2(k)= &(tmp2*= x2);
}
tmp1= tmp2= x1= x2= [];
/* Compute powers: X1^K1 * X2^K2 (with current degree K = K1+K2 = 0..M). */
n= (m+1)*(m+2)/2; /* number of coefficients */
xp= array(pointer, n);
if (is_void(w)) {
xp((i= 1))= &array(1.0); /* K=0, K1=0, K2=0 */
for (k=1 ; k<=m ; k++) {
xp(++i)= xp1(k); /* K1=K, K2=0 */
for (k1=k-1, k2=1 ; k1>0 ; k1--, k2++)
xp(++i)= &(*xp1(k1) * *xp2(k2)); /* K1=K-1..1, K2=1..K-1 */
xp(++i)= xp2(k); /* K1=0, K2=K */
}
} else {
/* Apply weights (if any, also do apply scalar weight to let the user
rescale the problem in case of overflows). */
w= sqrt(w); /* SIGFPE if any of W < 0 */
xp((i= 1))= &w; /* K=0, K1=0, K2=0 */
for (k=1 ; k<=m ; k++) {
xp(++i)= &(w * *xp1(k)); /* K1=K, K2=0 */
for (k1=k-1, k2=1 ; k1>0 ; k1--, k2++)
xp(++i)= &(w * *xp1(k1) * *xp2(k2)); /* K1=K-1..1, K2=1..K-1 */
xp(++i)= &(w * *xp2(k)); /* K1=0, K2=K */
}
y*= w;
w= [];
}
xp1= xp2= [];
/* Solve. */
return solve_lfit(y, xp);
}
/*---------------------------------------------------------------------------*/
func solve_lfit(y, yp, w)
/* DOCUMENT x= solve_lfit(data, ptr);
-or- x= solve_lfit(data, ptr, wght);
Return solution of a weighted least square linear fit:
X= arg min sum( WGHT * (MODEL(X) - DATA)^2 )
where the model is obtained by linear combination of the "basic
model components" stored in the array of pointers PTR:
MODEL(X)= X(1) * *PTR(1) + ... + X(N) * *PTR(N)
where N=numberof(PTR). Each component *PTR(i) must be conformable with
the DATA array.
If the weights WGHT array is missing, the result is the same as with
WGHT=1.0 (actually WGHT set to any strictly positive scalar yields the
same result).
SEE ALSO: poly1_fit, poly2_fit. */
{
n= numberof(yp);
/* Apply weights (if any, also do apply scalar weight to let the user
rescale the problem in case of overflows). */
if (! is_void(w)) {
yp= tmp= yp; /* Make a local copy, so that further assignations like
YP(i)= ... do not affect the contents of PTR for the
caller. */
w= sqrt(w); /* SIGFPE if any of W negative */
for (i=1 ; i<=n ; i++)
yp(i)= &(w * *yp(i));
y*= w;
w= tmp= [];
}
/* Compute left hand-side matrix A and right-hand side vector B. */
a= array(double, n, n);
b= array(double, n);
dimsof(y)); /* Multiplying by this array ensure that all
the *YP(i) and Y have the same shape, being
conformable is not sufficient, because the
sum(...)'s below would be incorrect. */
for (i=1 ; i<=n ; i++) {
b(i)= sum(y * (ypi= one * *yp(i)));
for (j=1 ; j<i ; j++) {
a(i,j)= sum(ypi * *yp(j));
}
a(i,i)= 0.5 * sum(ypi * ypi); /* 0.5 because of the transpose below */
}
y= yp= ypi= [];
a+= transpose(a);
/* Solve. */
#if 0
if (noneof(a)) {
/* This can only appends if all weights are zero but the above check
should be faster than checking directly W. */
error, "bad weight W=0.0 everywhere";
}
#endif
return LUsolve(a, b);
}
/*---------------------------------------------------------------------------*/
require, "plot.i";
func plpwf(y, x, color=, degree=, symbol=)
/* DOCUMENT plpwf, y, x;
-or- c= plpwf(y, x);
plot data as points with polynomial fit. When called as a subroutine,
prints out the coefficients of the polynomial. When called as a
function, returns the polynomial coefficients.
KEYWORDS
DEGREE polynomial degree, default 1.
COLOR color for the plot (data points and curve fit).
SYMBOL symbol shape (see plp).
SEE ALSO: plp, poly1_fit. */
{
if (is_void(degree)) degree= 1;
c= poly1_fit(y, x, degree);
plp, y, x, color=color, symbol=symbol;
plg, poly1(x, c), x, color=color;
if (am_subroutine()) print, c;
else return c;
}
/*---------------------------------------------------------------------------*/
func poly1_gcv_fit(y, x, w, degree=, verbose=, all=, get_info=)
/* DOCUMENT c= poly1_gcv_fit(y, x);
-or- c= poly1_gcv_fit(y, x, w);
Apply Generalized Cross Validation criteria to select the best polynomial
that fits Y(X). For each increasing polynomial degree, the ability of
the model to predict measured values is estimated by:
GCV_CHI2 = sum_i [ W(i) * (PREDICTED(i) - Y(i))^2 ]
where PREDICTED(i) is the value at X(i) of a model that fits all data
points (X,Y) but the Ith one (i.e. the point (X(i),Y(i)) is missing).
One can expect that, for too simple models (too low polynomial degrees)
GCV_CHI2 will be large due to the inability of the model to fit the
real behaviour of the data. Besides, as models get more complicated,
they tend to also fit the noise contribution in the data in, thus yield
large value for GCV_CHI2.
Where W is the optional third argument: weight for Y (default 1.0).
The coefficients C returned by poly1_gcv_fit correspond to the `best'
fit: the less complicated model for which GCV_CHI2 is minimal.
KEYWORDS
DEGREE Polynomial degrees to check as: [DEGREE_MIN, DEGREE_MAX] or just
DEGREE_MAX (DEGREE_MIN will be 0), default [0, numberof(y)-2].
VERBOSE Flag: print out polynomial degree and GCV value.
ALL Force checking of all the degrees between DEGREE_MIN and DEGREE_MAX.
The default behaviour is to stop when the 1st minimum is found.
Should only be used with VERBOSE=1 or GET_INFO=1.
GET_INFO Flag: return misfit information? The default is to return
the coefficients of the best polynomial fit. With this flag,
the result is: C(1,)= polynomial degree
C(2,)= sqrt(GCV_CHI2/sum(W))
SEE ALSO: poly1_fit. */
{
if (numberof(x) < numberof(y)) x*= array(1.0, dimsof(y));
if (numberof(x) > numberof(y)) y*= array(1.0, dimsof(x));
n= numberof(x);
if (is_void(w)) {
w= array(1.0, dimsof(y));
} else {
if (numberof(w) < numberof(y)) w*= array(1.0, dimsof(y));
if (numberof((i= where(w>0))) != n) {
if (!is_array(i) || anyof(w<0)) error, "bad weight W";
w= w(i);
x= x(i);
y= y(i);
n= numberof(x);
}
}
if (numberof(degree)==2) {
degree_min= min(degree);
degree_max= max(degree);
} else if (numberof(degree)==1) {
degree_min= 0;
degree_max= degree;
} else {
degree_min= 0;
degree_max= n-2;
}
if (degree_min<0) error, "DEGREE_MIN too small";
if (degree_max>n-2) error, "DEGREE_MAX too large";
if (get_info) {
out= array(double, 2, degree_max-degree_min+1);
out(1,)= indgen(degree_min:degree_max);
}
if (verbose) {
s= " DEGREE:";
for (degree=degree_min ; degree<=degree_max ; degree++) {
s+= swrite(format=" %-3d", degree);
}
write, format="%s\n%s", s, " GCV CHI2:";
}
best_chi2= -1;
best_degree= -1;
sw= sum(w);
for (degree=degree_min ; degree<=degree_max ; degree++) {
for (chi2=0.0, i=1 ; i<=n ; i++) {
wp= w;
wp(i)= 0;
chi2+= w(i) * (y(i) - poly1(x(i), poly1_fit(y, x, degree, wp)))^2;
}
gcv_rms= sqrt(chi2 / sw);
if (verbose) write, format=" %8.3g", gcv_rms;
if (get_info) out(2, degree-degree_min+1)= gcv_rms;
/* With same CHI2, we favor the least polynomial degree: to be retained,
the new CHI2 must be STRICTLY LESS than the previous one. */
if (best_chi2<0 || chi2<best_chi2) {
best_degree= degree;
best_chi2= chi2;
} else if (! all) break;
}
if (verbose) write, "";
if (get_info) return out;
return poly1_fit(y, x, best_degree, w);
}
/*---------------------------------------------------------------------------*/
|