1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/*
* linalg.i -
*
* Linear Algebra functions for Yorick.
*
*-----------------------------------------------------------------------------
*
* Copyright (C) 2003-2004 Eric THIEBAUT.
*
* This file is part of OptimPack.
*
* OptimPack is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*
* OptimPack is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Yeti (file "COPYING" in the top source directory); if
* not, write to the Free Software Foundation, Inc., 59 Temple Place,
* Suite 330, Boston, MA 02111-1307 USA.
*
*-----------------------------------------------------------------------------
*
* History:
* $Id: linalg.i,v 1.1.1.1 2007/12/11 23:55:10 frigaut Exp $
* $Log: linalg.i,v $
* Revision 1.1.1.1 2007/12/11 23:55:10 frigaut
* Initial Import - yorick-yutils
*
*/
func gram_schmidt_orthonormalization(b)
/* DOCUMENT gram_schmidt_orthonormalization, b;
-or- gram_schmidt_orthonormalization(b)
Performs Gram-Schmidt orthonormalization of basis functions B. If
B is an array of pointers, then the input basis vectors are *B(i)
for i=1,..,numberof(B); otherwise, the input basis vectors are B(..,i)
for i=1,..,dimsof(B)(0). When called as a subroutine, the operation
is done "in-place".
SEE ALSO: SVdec. */
{
local b_i, b_j;
/* NOTE: type conversion of array X, e.g. double(X), is a no-operation
if X already of given type. */
if (! is_array(b)) error, "expecting array parameter";
type = double;
if ((s = structof(b)) == pointer) {
ptr = 1;
n = numberof(b);
if (! am_subroutine()) b = b; /* make a private copy */
for (i=1 ; i<=n ; ++i) {
if ((s = structof(*b(i))) == complex) type = complex;
else if (s != double && s != float && s != long && s != int &&
s != short && s != char) error, "bad data type";
}
} else {
ptr = 0;
n = dimsof(b)(0);
if ((s = structof(b)) == complex) type = complex;
else if (s != double && s != float && s != long && s != int &&
s != short && s != char) error, "bad data type";
if (s != type) {
if (am_subroutine()) error, "bad data type for in-place conversion";
b = type(b);
}
}
if (type == complex) error, "complex data type not yet implemented";
/* Gram-Schmidt Orthonormalization. */
for (i=1 ; i<=n ; ++i) {
/* get i-th basis vector */
if (prt) eq_nocopy, b_i, type(*b(i));
else b_i = b(.., i);
/* make the i-th vector othogonal to previous ones */
if (i > 1) {
if (prt) eq_nocopy, b_j, type(*b(1));
else b_j = b(.., 1);
s = sum(b_i*b_j)*b_j;
for (j=2 ; j<i ; ++j) {
if (prt) eq_nocopy, b_j, type(*b(j));
else b_j = b(.., j);
s += sum(b_i*b_j)*b_j;
}
b_i -= s;
}
/* normalize i-th vector */
s = sum(b_i*b_i);
if (ptr) {
b(i) = &((s > 0.0 ? (1.0/sqrt(s))*b_i : array(double, dimsof(b_i))));
} else {
b(..,i) = (s > 0.0 ? (1.0/sqrt(s))*b_i : array(double, dimsof(b_i)));
}
}
return b;
}
func trace(a)
/* DOCUMENT trace(a)
Returns the trace of matrix A.
SEE ALSO: diag. */
{
if (! is_array(a) || (dims = dimsof(a))(1) != 2)
error, "expecting a 2D array";
m = dims(2);
n = dims(3);
return a(sum:1:m*min(m,n):m+1);
}
func diag(a)
/* DOCUMENT diag(a)
Returns the diagonal of matrix A (if A is a 2D array) or a square
diagonal matrix with diagonal elements equal to those of vector A (if
A is a 1D array).
SEE ALSO: trace, unit. */
{
if (is_array(a)) {
if ((dims = dimsof(a))(1) == 1) {
m = dims(2);
(mx = array(structof(a), m, m))(1:m*m:m+1) = a;
return mx;
} else if (dims(1) == 2) {
m = dims(2);
n = dims(3);
return a(1:m*min(m,n):m+1);
}
}
error, "expecting a 1D or 2D array";
}
func euclidean_norm(x)
/* DOCUMENT euclidean_norm(x)
Returns the Euclidian norm of X: sqrt(sum(X*X)), taking care of overflows.
*/
{
if (! (s = max(-min(x), max(x)))) return 0.0;
x *= 1.0/s;
return s*sqrt(sum(x*x));
}
func pm(a, ndigits=, file=, format=)
/* DOCUMENT pm, a;
Prints matrix A. Keyword FILE can be set to the name/stream of output
file; the default is to use standard output. If keyword NDIGITS is
set, floating-point values get printed with that number of significant
digits; alternatively, keyword FORMAT may be set with the format for
each element of A -- for complex numbers, the real and imaginary parts
use the same format.
SEE ALSO: write. */
{
if (! is_array(a) || (dims = dimsof(a))(1) != 2) {
error, "expecting a 2-dimensional array";
}
m = dims(2);
n = dims(3);
s = structof(a);
if (s == complex) {
if (is_void(format)) {
if (is_void(ndigits)) ndigits = 5;
format = swrite(format="%%.%dg+%%.%dgi", ndigits, ndigits);
} else {
format += "+" + format + "i";
}
a = swrite(format=format, double(a), a.im);
} else if (s == pointer) {
a = swrite(a);
} else {
if (is_void(format)) {
if (s == double) {
if (is_void(ndigits)) ndigits = 5;
format = swrite(format="%%.%dg", ndigits);
} else if (s == float) {
if (is_void(ndigits)) ndigits = 3;
format = swrite(format="%%.%dg", ndigits);
} else if (s == long || s == int || s == short) {
format = "%d";
} else if (s == char) {
format = "0x%02x";
} else if (s == string) {
/* should escape quotes in input strings */
format = "\"%s\"";
} else {
error, "bad data type";
}
}
a = swrite(format=format, a);
}
if (structof(file) == string) file = open(file, "w");
cols = swrite(format="(,%d)",indgen(n));
rows = swrite(format="(%d,)",indgen(m));
fmt0 = swrite(format="%%%ds", max(strlen(rows)));
fmt1 = swrite(format=" %%-%ds", max(max(strlen(cols)), max(strlen(a))));
fmt2 = " %s\n";
write, file, format=fmt0, "";
for (j=1 ; j<n ; ++j) write, file, format=fmt1, cols(j);
write, file, format=fmt2, cols(n);
for (i=1 ; i<=m ; ++i) {
write, file, format=fmt0, rows(i);
for (j=1 ; j<n ; ++j) write, file, format=fmt1, a(i,j);
write, file, format=fmt2, a(i,n);
}
}
/*---------------------------------------------------------------------------*/
/* Cholesky Decomposition */
func cholesky(a, raw)
/* DOCUMENT cholesky(a)
-or- cholesky(a, 0/1)
Given a symmetric positive definite matrix A, returns a lower
triangular matrix C which is the Cholesky decomposition of A such
that:
A = C(+,)*C(+,);
If optional second argument is true (non-nil and non-zero), the
scratch values in the upper triangular part of C are left unchanged;
otherwise (the default behavior), the upper triangular part of C is
filled with zeros.
*/
{
if (! is_array(a) || structof(a) == complex ||
(dims = dimsof(a))(1) != 2 || (n = dims(2)) != dims(3))
error, "expecting a N N non-complex array";
a = double(a);
if ((s = a(1,1)) <= 0.0) error, "the matrix is not positive definite";
a(1,1) = sqrt(s);
for (j=2 ; j<=n ; ++j) {
a(1,j) = (t = a(1,j)/a(1,1));
s = t*t;
for (k=2 ; k<j ; ++k) {
rng = 1:k-1;
a(k,j) = (t = (a(k,j) - sum(a(rng,k)*a(rng,j)))/a(k,k));
s += t*t;
}
s = a(j,j) - s;
if (s <= 0.0) error, "the matrix is not positive definite";
a(j,j) = sqrt(s);
}
#if 0 /* slower code (in Yorick) but less obscure */
for (j=1 ; j<=n ; ++j) {
s = 0.0;
for (k=1 ; k<j ; ++k) {
if (k == 1) {
t = a(1,j) / a(1,1);
} else {
rng = 1:k-1;
t = (a(k,j) - sum(a(rng,k)*a(rng,j))) / a(k,k);
}
a(k,j) = t;
s += t*t;
}
s = a(j,j) - s;
if (s <= 0.0) error, "the matrix is not positive definite";
a(j,j) = sqrt(s);
}
#endif
if (! raw) {
for (k=1 ; k<n ; ++k) a(k+1, 1:k)=0;
}
return a;
}
/*---------------------------------------------------------------------------*/
/* Singular Vlaue Decomposition */
local sv_intro;
/* DOCUMENT sv_intro - introduction to SVD Yorick package
*
* Notes about matrix multiplication in Yorick:
*
* A.B = A(,+)*B(+,)
* A'.B = A(+,)*B(+,) // transpose of A times B
* A.B' = A(,+)*B(,+) // A times transpose of B
*
* diag(s).A = diag(s)(,+)*A(+,)
* = s*A = A*s
*
* diag(s).A' = diag(s)(,+)*A(,+)
* = transpose(s(-,)*A) = transpose(A*s(-,))
*
* A.diag(s) = A(,+)*diag(s)(+,)
* = A*s(-,) = s(-,)*A
*
* A'.diag(s) = A(+,)*diag(s)(+,) = A(+,)*diag(s)(,+)
* = transpose(A*s) = transpose(s*A)
*
* Singular Value Decomposition:
*
* A = U.diag(SIGMA).V' = U.diag(SIGMA).VT
* = (U*SIGMA(-,))(,+)*VT(+,)
* = U(,+)*(SIGMA*VT)(+,)
*
* where:
*
* SIGMA = SVdec(A, U, VT)
*
* Columns of U and V form an orthonormal basis (i.e. U and V are
* column-orthonormal):
*
* U'.U = V'.V = I
*
* in Yorick notation:
*
* U(+,)*U(+,) = V(+,)*V(+,) = VT(,+)*VT(,+) = unit(N)
*
* Note (to be verified): if U and/or V are square, they are also
* row-orthonormal:
*
* U'.U = U.U' = I (if U is square)
* V'.V = V.V' = I (if V is square)
*
* Generalized-inverse of A:
*
* AP = V.diag(1/SIGMA).U' = VT'.diag(1/SIGMA).U'
* = VT(+,)*((1.0/SIGMA)(-,)*U)(,+)
* = ((1.0/SIGMA)*VT)(+,)*U(,+)
*
* Solving a linear problem: A.x ~ b with SVD (taking care of index
* ordering for faster matrix multiplication):
*
* X = V.diag(W).U'.B
* = (W*VT)(+,)*U(,+))(,+)*B(+,..)
* = (W*VT)(+,)*(U(+,)*B(+,..))(+,..) // sum over 1st indices: faster
*
* where W is an approximation of 1/SIGMA.
*
* SEE ALSO: sv_dcmp, sv_solve_trunc, sv_solve_wiener, SVdec, SVsolve.
*/
func sv_dcmp(a, full)
/* DOCUMENT sv_dcmp(a)
-or- sv_dcmp(a, full)
Computes the singular value decomposition of matrix A. The result
is an array of pointers:
[&SIGMA, &U, &VT]
where SIGMA is the vector of singular values of A, and the columns of
U and the rows of VT are the left and right singular vectors
(respectively). Using matrix notation:
A = U.diag(SIGMA).V' = U.diag(SIGMA).VT
and using Yorick notation:
A = (U*SIGMA(-,))(,+)*VT(+,)
= U(,+)*(SIGMA*VT)(+,)
FULL has the same meaning as keyword FULL in SVdec (to see).
SEE ALSO: sv_dcmp, sv_solve_trunc, sv_solve_wiener, SVdec. */
{
local u, vt;
sigma = SVdec(a, u, vt, full=full);
return [&sigma, &u, &vt];
}
func _sv_get_dcmp(a, full)
/* DOCUMENT local sigma, u, vt; _sv_get_dcmp(a);
-or- local sigma, u, vt; _sv_get_dcmp(a, full)
Private routine used to extract Singular Value Decomposition of A into
external symbols: SIGMA, U and VT.
SEE ALSO: sv_dcmp, sv_solve_trunc, sv_solve_wiener. */
{
extern sigma, u, vt;
if (structof(a) == pointer) {
eq_nocopy, sigma, *a(1);
eq_nocopy, u, *a(2);
eq_nocopy, vt, *a(3);
} else {
sigma = SVdec(a, u, vt, full=full);
}
}
func sv_solve_trunc(a, b, eps, full=)
/* DOCUMENT sv_solve_trunc(a, b, eps)
Solve linear problem A.x = b by truncated singular value method. A is
either a matrix or the singular value value decomposition as returned
by sv_dcmp (to see). B is the right hand side vector (or array to
solve for several right hand sides at a time). EPS (in the range
[0,1]) is the minimum relative singular value to keep, i.e. all
singular values less than EPS*max(SIGMA) get discarded (SIGMA is the
vector of singular values of A). The result is:
(W*VT)(+,)*(U(+,)*B(+,..))(+,..)
where SIGMA, U and VT are the components of the singular value
decomposition of A and W is:
W(i) = 1/SIGMA(i) if SIGMA(i) > EPS*max(SIGMA);
0 otherwise.
SEE ALSO: sv_dcmp, sv_intro, sv_solve_wiener. */
{
local sigma, u, vt;
_sv_get_dcmp, a, full;
if (is_void(eps)) eps = 1e-1;
w = double(sigma > eps*sigma(1))/(sigma + !sigma);
return (w*vt)(+,)*(u(+,)*b(+,..))(+,..);
}
func sv_solve_wiener(a, b, eps, full=)
/* DOCUMENT sv_solve_wiener(a, b, eps)
Solve linear problem A.x = b by Wiener filtering of the singular
values. A is either a matrix or the singular value value
decomposition as returned by sv_dcmp (to see). B is the right hand
side vector (or array to solve for several right hand sides at a
time). EPS (in the range [0,1]) is the relative singular value filter
level. The result is:
(W*VT)(+,)*(U(+,)*B(+,..))(+,..)
where SIGMA, U and VT are the components of the singular value
decomposition of A and W is:
W = SIGMA/(SIGMA^2 + (EPS*max(SIGMA))^2)
SEE ALSO: sv_dcmp, sv_intro, sv_solve_trunc. */
{
local sigma, u, vt;
_sv_get_dcmp, a, full;
if (is_void(eps)) eps = 1e-1;
w = sigma/(sigma*sigma + (eps*sigma(1))^2);
return (w*vt)(+,)*(u(+,)*b(+,..))(+,..);
}
/*---------------------------------------------------------------------------*/
|