1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/*
* detect.i --
* Detection of local minima/maxima for Yorick.
*
* Copyright (c) 2003, Eric THIEBAUT.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details (to receive a copy of the GNU
* General Public License, write to the Free Software Foundation, Inc., 675
* Mass Ave, Cambridge, MA 02139, USA).
*
* Routines:
* find_1d_minmax - find local minima/maxima in 1-D array.
* plot_1d_minmax - plot local minima/maxima in 1-D array.
* find_2d_max - find isolated local maxima in 2-D array.
*
* History:
* $Id: detect.i,v 1.1.1.1 2007/12/11 23:55:13 frigaut Exp $
* $Log: detect.i,v $
* Revision 1.1.1.1 2007/12/11 23:55:13 frigaut
* Initial Import - yorick-yutils
*
*
*-----------------------------------------------------------------------------
*/
func find_1d_minmax(a, what, inf=, sup=, alev=, rlev=, hysteresis=)
/* DOCUMENT find_1d_minmax(a)
* -or- find_1d_minmax(a, what)
* Find local minima/maxima in 1-D array A. If WHAT is nil or zero, the
* function returns an array of integers with same shape as A and set to
* +1 where A is a local maximum, to -1 where A is a local minimum and to
* 0 elsewhere. Otherwise, the function returns the indices of local
* maxima or local minima depending whether WHAT is positive or negative
* (the result may be empty). WHAT may also be a string: "any", "min" or
* "max".
*
* Contiguous extrema, say a local maximum LOCMAX and a local minimum
* LOCMIN, are separated by a strict hysteresis (or a gap) such that:
*
* LOCMAX - LOCMIN > HYSTERESIS*(max(A) - min(A)) >= 0
*
* The default is HYSTERESIS=0, i.e. all strict local minima/maxima are
* detected. However, in order to avoid being too sensitive to local
* extrema (for instance because of noise), the hysteresis of the
* algorithm can be adjusted by keywords INF, SUP, ALEV, RLEV or
* HYSTERESIS. Note that the easiest keywords to play with are
* HYSTERESIS or ATOL and RTOL (SUP and INF are more tricky to use).
*
* HYSTERESIS = level of hysteresis relative to peak-to-peak value of A.
* HYSTERESIS must be conformable with A and everywhere
* non-negative (this is not checked). HYSTERESIS is another way
* to specify the absolute tolerance and is only significant if
* ALEV is not specified. Specifying HYSTERESIS gives an absolute
* tolerance:
* ALEV = (max(A) - min(A))*HYSTERESIS.
* Hence the lower is the hysteresis, the more local extrema will
* be detected. As a rule of thumb, a good value for the
* hysteresis is the 3-4 divided by the signal-to-noise-ratio.
*
* ALEV = absolute level of hysteresis. ALEV must be conformable with A
* and such that ALEV >= 0 everywhere (this is not checked). The
* default is the same as with ALEV=0 (unless keyword HYSTERESIS
* is specified).
*
* RLEV = relative level of hysteresis. RLEV must be conformable with A
* and such that 0 <= RLEV < 1 everywhere (this is not checked).
* The default is the same as with RLEV=0.
*
* INF = inferior bound with respect to a maximum: A(i) may be a local
* maximum with respect to A(j) if and only if A(j) < INF(i). INF
* must have the same number of elements as A. If INF is not
* specified, it is computed from the value of ALEV and RLEV.
* Given ALEV and RLEV, the inferior bound is:
* INF = A - (ALEV + RLEV*abs(A))
*
* SUP = superior bound with respect to a minimum: A(i) may be a local
* minimum with respect to A(j) if and only if A(j) > SUP(i). SUP
* must have the same number of elements as A. If SUP is not
* specified, it is computed from the value of ALEV and RLEV.
* Given ALEV and RLEV, the superior bound is such that:
* A = SUP - (ALEV + RLEV*abs(SUP))
* or:
* SUP = (A + ALEV)/(1 - sign(SUP)*RLEV)
* since 0 <= RLEV < 1 then SUP has the same sign as A + ALEV and
* finally:
* SUP = (A + ALEV)/(1 - sign(A + ALEV)*RLEV)
*
* SEE ALSO: plot_1d_minmax.
*/
{
if (structof(what) == string) {
if (what == "any") what = 0;
else if (what == "max") what = 1;
else if (what == "min") what = -1;
else error, "bad value for WHAT (must be \"any\", \"min\" or \"max\")";
}
if (! is_array(a) || (dimsof(a)(1)) != 1) error, "expecting 1-D array";
if ((s = structof(a)) != double) {
if (s == complex) error, "illegal complex array";
a = double(a);
}
n = numberof(a);
/* compute the inferior/superior bounds */
if (is_void(inf) || is_void(sup)) {
if (is_void(alev)) {
if (is_void(hysteresis)) alev = 0.0;
else alev = (max(a) - min(a))*hysteresis;
}
if (noneof(rlev)) {
if (noneof(alev)) {
if (is_void(inf)) eq_nocopy, inf, a;
if (is_void(sup)) eq_nocopy, sup, a;
} else {
if (is_void(inf)) inf = a - alev;
if (is_void(sup)) sup = a + alev;
}
} else {
if (is_void(inf)) inf = a - rlev*abs(a) - alev;
if (is_void(sup)) {
sup = a + alev; /* temporary */
sup = sup/(1.0 - sign(sup)*rlev);
}
}
}
type = array(long, n);
/* start with leftmost element */
imin = imax = i = 1;
vmin = vmax = a(1);
vinf = inf(1);
vsup = sup(1);
state = 0;
for (;;) {
val = a(++i);
if (i == n) {
/* end-point */
if (state > 0) {
type((val > vmax ? i : imax)) = 1;
} else if (state < 0) {
type((val < vmin ? i : imin)) = -1;
}
break;
}
if (state >= 0) {
/* seeking for a local maximum */
if (val < vinf) {
/* accept maximum value found so far as a local maximum and setup
to start seeking for next local minimum */
type(imax) = 1;
imin = i;
vmin = val;
vsup = sup(i);
state = -1;
} else if (val > vmax) {
/* higher maximum found */
imax = i;
vmax = val;
vinf = inf(i);
}
}
if (state <= 0) {
/* seeking for a local minimum */
if (val > vsup) {
/* accept maximum value found so far as a local maximum and setup
to start seeking for a local minimum */
type(imin) = -1;
imax = i;
vmax = val;
vinf = inf(i);
state = 1;
} else if (val < vmin) {
/* lower minimum found */
imin = i;
vmin = val;
vsup = sup(i);
}
}
}
return (what ? (what > 0 ? where(type > 0) : where(type > 0)) : type);
}
func plot_1d_minmax(y, x, list, nocurve=, type=, width=, color=,
symbol=, size=, fill=,
what=, inf=, sup=, alev=, rlev=, hysteresis=)
/* DOCUMENT plot_1d_minmax, y;
-or- plot_1d_minmax, y, x;
-or- plot_1d_minmax, y, x, list;
Plot (X,Y) curve with local minima/maxima. LIST is the list of
extrema as returned by find_1d_minmax; if LIST is nil, find_1d_minmax
is used to find the extrema (with argument Y, and values of keywords
WHAT, INF, SUP, ALEV, RLEV and/or HYSTERESIS).
Unless keyword NOCURVE is true, the curve (X,Y) is plotted as well
(with values of keywords TYPE, WIDTH and/or COLOR).
Keywords SYMBOL, SIZE, FILL, and COLOR can be used to customize the
plotting of local minima/maxima. If SYMBOL is unspecified and both
minima and maxima are to be plotted, triangles pointing to the top (to
the bottom) will be used to display maxima (minima).
When called as a function, actual LIST is returned.
SEE ALSO: find_1d_minmax, plp, plg. */
{
if (is_void(list)) list = find_1d_minmax(y, what, inf=inf, sup=sup,
alev=alev, rlev=rlev,
hysteresis=hysteresis);
if (is_void(x)) x = double(indgen(numberof(y)));
if (! nocurve) plg, y, x, color=color, type=type, width=width;
if (numberof(list) == numberof(y)) {
/* plot both minima and maxima */
if (is_array((i = where(list < 0)))) {
plp, y(i), x(i), symbol=(is_void(symbol) ? 7 : symbol),
size=size, color=color, fill=fill;
}
if (is_array((i = where(list > 0)))) {
plp, y(i), x(i), symbol=(is_void(symbol) ? 3 : symbol),
size=size, color=color, fill=fill;
}
} else if (! is_void(list)) {
plp, y(list), x(list), symbol=symbol, size=size, color=color, fill=fill;
}
return list;
}
/*---------------------------------------------------------------------------*/
func find_2d_max(img, alev=, rlev=, cmin=, cmax=, bad=, debug=)
/* DOCUMENT map = find_2d_max(img)
Find disjoint local maxima in 2-D array IMG and return an array of
integers MAP with same shape as IMG and set as follow:
MAP(x,y) = -1 for bad pixels (or strictly above CMAX)
MAP(x,y) = 0 for pixels not assigned to any local maximum
MAP(x,y) = N (N>0) for pixels assigned to N-th local maximum
The maxima are labelled from the higher to the lower. Hence
where(MAP==1) gives the indices of pixels around the stronger maximum.
The selection works as follows. The algorithm starts with the next
(unassigned) higher maximum and then marks all connected pixels which
are greater or equal to a given threshold. If a bad pixel or a pixel
already assigned to another maximum is encountered during this stage,
the algorithm gives up this maximum and proceeds with the next one.
Otherwise, the marked region is assigned to the maximum and the
algorithm proceeds with the next one. This algorithm guarantees that
the marked regions are all separated (by at least one pixel) from each
other and from any bad pixel. The threshold reads:
THRESHOLD = PEAK - RLEV*abs(PEAK) - ALEV
where PEAK is the current maximum, ALEV (ALEV>=0 everywhere) and RLEV
(0<=RLEV<1 everywhere) are the absolute and relative threshold levels.
ALEV and RLEV are given by keyword. By default, ALEV=0 and RLEV=0.
Keyword CMIN can be used to set the minimum value of a local maximum.
Since searching all maxima may be prohibitively long, it is strongly
recommended to limit the depth of the search by the keyword CMIN.
Keywords BAD and/or CMAX can be used to mark as bad pixels the ones
for which BAD is non-zero and/or which are (strictly) above CMAX.
If specified, keywords ALEV, RLEV, CMIN, CMAX and BAD must all be
conformable with IMG; you can therefore setup things on a per-pixel
basis, or columnwise, or rowwise...
EXAMPLE:
For instance, if SIGMA is the standard deviation of noise in the image
and BACKGROUND is its background level (both could be pixelwise),
then:
find_2d_max(IMG, cmin=BACKGROUND+3*SIGMA, alev=4*SIGMA)
will find all the maxima in IMG which are above the background with a
3 SIGMA confidence level and mark the regions around every maximum
(with value PEAK) where connected pixels are such that:
IMG >= PEAK - 4*SIGMA
HINTS:
1. Use keyword CMIN to limit the search (possibly on a per-pixel
basis).
2. The search necessitates to sort the pixels elligible to be local
maxima (all which are above CMIN, below CMAX and not in BAD), this
sorting can be very long for large images (again use CMIN) but also
for integer valued images (a drawback of the quicksort algorithm?)
to overcome this it is sufficient to add a small amount of random
noise in the image, for instance:
find_2d_max(IMG + 1e-9*(random(dimsof(IMG)) - 0.5), ...)
but beware that this can make the result (slightly) inpredictible.
SEE ALSO: sort, find_1d_minmax. */
{
if (! is_array(img) ||
((dims = dimsof(img))(1)) != 2) error, "expecting 2-D array";
#if 0
if ((s = structof(img)) != double) {
if (s == complex) error, "illegal complex array";
img = double(img);
}
#endif
/* mark bad points */
region = array(long, dims); /* needed to make BAD conformable with IMG */
if (is_void(bad)) {
if (! is_void(cmax)) bad = (img > cmax);
} else if (is_void(cmax)) {
bad |= region; /* make BAD conformable with IMG */
} else {
bad |= (img > cmax);
}
if (anyof(bad)) region(where(bad)) = -1;
/* sort pixels eligible for being local maxima */
if (debug) write, format="%s...", "sorting";
if (is_void(cmin) && is_void(bad)) {
index = sort(img(*));
} else {
if (is_void(cmin)) index = where(! bad);
else if (is_void(bad)) index = where(img >= cmin);
else index = where((! bad) & (img >= cmin));
if (! is_array(index)) {
write, "warning no pixel are eligible for being local maxima";
return region;
}
index = index(sort(img(index)));
}
if (debug) write, format="%s\n", "done";
bad = cmin = cmax = []; /* free some memory */
/* compute threshold */
if (is_void(rlev)) {
if (is_void(alev)) threshold = img(index);
else threshold = (img - alev)(index);
} else {
if (is_void(alev)) threshold = (img - rlev*abs(img))(index);
else threshold = (img - alev - rlev*abs(img))(index);
}
alev = rlev = []; /* free some memory */
/* serach local maxima */
number = numberof(img);
width = dims(2);
height = dims(3);
list = array(long, number); /* indices of pixels in current region */
state = array(long, dims);
mark = 1;
for (i=numberof(index) ; i>=1 ; --i) {
j = index(i);
if (region(j)) continue;
level = threshold(i);
#if 0
if (debug) {
write, format="search max around (%d,%d) %g >= %g\n",
1 + (j - 1)%width, 1 + (j - 1)/width,double(img(j)),
double(level);
}
#endif
/* Use a kind of non-recursive flood-fill algorithm.
*
* The 3 following bits are used to indicate the directions to
* investigate (so that we limit the number of checks undergone by a
* pixel):
*
* +---+
* | 4 |
* +---+---+---+
* | 2 | x | 1 |
* +---+---+---+
* | 8 |
* +---+
*
* region(x,y) = 0 if unused
* region(x,y) = -1 if invalid
* region(x,y) = n if inside n-th blob
*
* TO DO: use same array for REGION and STATE
*
*/
region(j) = mark; /* mark current maximum */
state(j) = 15; /* will check all neighbors of current maximum */
count = 1; /* number of pixels in the current region */
list(1) = j; /* current maximum belongs to current region */
discard = 0n; /* no error yet */
for (j=1 ; j<=count ; ++j) {
k = list(j);
x = 1 + (k - 1)%width;
y = 1 + (k - 1)/width;
s = state(k);
//if (debug) write,format="state(%d,%d)=\n";
if (s & 1) {
if (x < width) {
l = k + 1;
if (! (r = region(l))) {
if (img(l) >= level) {
region(l) = mark;
state(l) = 13; /* (1|2|4|8) & ~2 */
list(++count) = l;
}
} else if (r == mark) {
state(l) = (s & 13);
} else {
discard = 1n;
break;
}
}
}
if (s & 2) {
if (x > 1) {
l = k - 1;
if (! (r = region(l))) {
if (img(l) >= level) {
region(l) = mark;
state(l) = 14; /* (1|2|4|8) & ~1 */
list(++count) = l;
}
} else if (r == mark) {
state(l) = (s & 14);
} else {
discard = 1n;
break;
}
}
}
if (s & 4) {
if (y < height) {
l = k + width;
if (! (r = region(l))) {
if (img(l) >= level) {
region(l) = mark;
state(l) = 7; /* (1|2|4|8) & ~8 */
list(++count) = l;
}
} else if (r == mark) {
state(l) = (s & 7);
} else {
discard = 1n;
break;
}
}
}
if (s & 8) {
if (y > 1) {
l = k - width;
if (! (r = region(l))) {
if (img(l) >= level) {
region(l) = mark;
state(l) = 11; /* (1|2|4|8) & ~4 */
list(++count) = l;
}
} else if (r == mark) {
state(l) = (s & 11);
} else {
discard = 1n;
break;
}
}
}
}
l = list(1:count);
if (discard) {
region(l) = 0;
} else {
++mark;
if (debug) {
fma;
//pli, region > 0;
pli, region;
pause, 1;
}
}
}
return region;
}
/*---------------------------------------------------------------------------*/
|