[go: up one dir, main page]

File: summary-methods.Rd

package info (click to toggle)
urca 1.3-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,428 kB
  • sloc: fortran: 509; ansic: 15; makefile: 2
file content (94 lines) | stat: -rw-r--r-- 3,950 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
\name{summary-methods}
\docType{methods}
\alias{summary}
\alias{summary-methods}
\alias{summary,ur.ers-method}
\alias{summary,ur.kpss-method}
\alias{summary,ca.jo-method}
\alias{summary,cajo.test-method}
\alias{summary,ca.po-method}
\alias{summary,ur.pp-method}
\alias{summary,ur.df-method}
\alias{summary,ur.sp-method}
\alias{summary,ur.za-method}
\encoding{latin1}
\title{Methods for Function summary in Package `urca'}
\description{
  Summarises the outcome of unit root/cointegration tests by creating a new object of class \code{sumurca}.
}
\section{Methods}{\describe{
    \item{object = "ur.df"}{The test type, its statistic, the test
      regression and the critical values for the Augmented Dickey and
      Fuller test are returned.}  
    \item{object = "ur.ers"}{The test type, its statistic and the
      critical values for the Elliott, Rothenberg and Stock test are
      returned. In case of test \code{"DF-GLS"} the summary output
      of the test regression is provided, too.}
    \item{object = "ur.kpss"}{The test statistic, the critical value as
      well as the test type and the number of lags used for error
      correction for the Kwiatkowski \emph{et al.} unit root test is
      returned.}
    \item{object = "ca.jo"}{The \code{"trace"} or \code{"eigen"} statistic,
      the critical values as well as the eigenvalues, eigenvectors and
      the loading matrix of the Johansen procedure are reported.}
    \item{object = "cajo.test"}{The test statistic of a restricted VAR
      with respect to \eqn{\bold{\alpha}} and/or \eqn{\bold{\beta}} with
      p-value and degrees of freedom is reported. Furthermore, the
      restriction matrix(ces), the eigenvalues and eigenvectors as well
      as the loading matrix are returned.}  
    \item{object = "ca.po"}{The \code{"Pz"} or \code{"Pu"} statistic,
      the critical values as well as the summary output of the test
      regression for the Phillips and Ouliaris cointegration test.}
    \item{object = "ur.pp"}{The Z statistic, the critical values as
      well as the summary output of the test regression for the Phillips
      and Perron test, as well as the test statistics for the
      coefficients of the deterministic part is returned.}
    \item{object = "ur.df"}{The relevant tau statistic, the critical
      values as well as the summary output of the test regression for
      the augmented Dickey-Fuller test is returned.}
    \item{object = "ur.sp"}{The test statistic, the critical value as
      well as the summary output of the test regression for the Schmidt
      and Phillips test is returned.}
    \item{object = "ur.za"}{The test statistic, the critical values as
      well as the summary output of the test regression for the Zivot and
      Andrews test is returned.}
}}
\seealso{
  \code{\link{ur.ers-class}}, \code{\link{ur.kpss-class}},
  \code{\link{ca.jo-class}}, \code{\link{cajo.test-class}},
  \code{\link{ca.po-class}}, \code{\link{ur.pp-class}},
  \code{\link{ur.df-class}}, \code{\link{ur.sp-class}},
  \code{\link{ur.za-class}} and \code{\link{sumurca-class}}.}
\examples{
data(nporg)
gnp <- na.omit(nporg[, "gnp.r"])
gnp.l <- log(gnp)
#
ers.gnp <- ur.ers(gnp, type="DF-GLS", model="trend", lag.max=4)
summary(ers.gnp)
#
kpss.gnp <- ur.kpss(gnp.l, type="tau", lags="short")
summary(kpss.gnp)
#
pp.gnp <- ur.pp(gnp, type="Z-tau", model="trend", lags="short")
summary(pp.gnp)
#
df.gnp <- ur.df(gnp, type="trend", lags=4)
summary(df.gnp)
#
sp.gnp <- ur.sp(gnp, type="tau", pol.deg=1, signif=0.01)
summary(sp.gnp)
#
za.gnp <- ur.za(gnp, model="both", lag=2)
summary(za.gnp)
#
data(finland)
sjf <- finland
sjf.vecm <- ca.jo(sjf, ecdet="none", type="eigen", K=2, season=4)
summary(sjf.vecm)
#
HF0 <- matrix(c(-1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), c(4,3))
summary(blrtest(sjf.vecm, H=HF0, r=3))
}
\author{Bernhard Pfaff}
\keyword{methods}