1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
\name{alphaols}
\alias{alphaols}
\encoding{latin1}
\title{OLS regression of VECM weighting matrix}
\description{
This functions estimates the \eqn{\bold{\alpha}} matrix of a VECM.
The following OLS regression of the R-form of the VECM is hereby
utilised:
\deqn{\bold{R}_{0t} = \bold{\alpha}\bold{\beta}\prime \bold{R}_{kt} +
\bold{\varepsilon}_t \qquad t=1, \dots, T}
}
\usage{
alphaols(z, reg.number = NULL)
}
\arguments{
\item{z}{An object of class \code{ca.jo}.}
\item{reg.number}{The number of the equation in the R-form that should
be estimated or if set to \code{NULL} (the default), all equations
within the R-form are estimated.}
}
\details{
The cointegrating relations, \emph{i.e.} \eqn{\bold{R}_{kt}\prime
\bold{\beta}} are calculated by using \code{z@RK} and \code{z@V}.
}
\value{
Returns an object of class \code{lm}.
}
\references{
Johansen, S. (1988), Statistical Analysis of Cointegration Vectors,
\emph{Journal of Economic Dynamics and Control}, \bold{12}, 231--254.
Johansen, S. and Juselius, K. (1990), Maximum Likelihood Estimation and
Inference on Cointegration -- with Applications to the Demand for
Money, \emph{Oxford Bulletin of Economics and Statistics}, \bold{52,
2}, 169--210.
Johansen, S. (1991), Estimation and Hypothesis Testing of
Cointegration Vectors in Gaussian Vector Autoregressive Models,
\emph{Econometrica}, \bold{Vol. 59, No. 6}, 1551--1580.
}
\seealso{
\code{\link{ca.jo}}, \code{\link[stats]{lm}}, \code{\link{ca.jo-class}}
and \code{\link{urca-class}}.
}
\examples{
data(denmark)
sjd <- denmark[, c("LRM", "LRY", "IBO", "IDE")]
sjd.vecm1 <- ca.jo(sjd, ecdet = "const", type="eigen", K=2, spec="longrun",
season=4)
summary(alphaols(sjd.vecm1))
summary(alphaols(sjd.vecm1, reg.number=1))
}
\author{Bernhard Pfaff}
\keyword{regression}
\concept{VECM OLS Loading Johansen Juselius Cointegration Co-integration}
|