1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
##
## cajolst
##
cajolst <- function (x, trend = TRUE, K = 2, season = NULL)
{
x <- as.matrix(x)
K <- as.integer(K)
if(K < 2){
stop("\nK must be at least K=2.\n")
}
P <- ncol(x)
arrsel <- P
N <- nrow(x)
if (!is.null(season)) {
s <- season - 1
}
else {
s <- 0
}
if (N * P < P + s * P + K * P^2 + P * (P + 1)/2)
stop("\nInsufficient degrees of freedom.\n")
if (P > 5)
warning("\nToo many variables, critical values cannot be computed.\n")
if (!(is.null(season))) {
dum <- (diag(season) - 1/season)[, -season]
dums <- dum
while (nrow(dums) < N) {
dums <- rbind(dums, dum)
}
dums <- dums[1:N, ]
if (NA %in% x) {
idx.NA <- 1:N
ind <- as.logical(sapply(idx.NA, function(z) sum(is.na(x[z,
]) * 1)))
ind2 <- ind * (1:N)
dums <- dums[-ind2, ]
}
}
x2 <- na.omit(x)
Ntot <- nrow(x2)
y <- embed(x2, (K + 1))
rhs <- y[, -c(1:P)]
if (!trend) {
rhs <- y[, -c(1:P)]
}
else {
trd <- seq(K + 1, nrow(y) + K)
rhs <- cbind(trd, y[, -c(1:P)])
}
N <- nrow(y)
if (!(is.null(season))) {
rhs <- cbind(dums[-(1:K), ], rhs)
}
lhs <- y[, 1:P]
idx <- 1:(N - 1)
tau <- function(t) {
dt <- c(rep(0, t), rep(1, N - t))
det(crossprod(resid(lm(lhs ~ dt + rhs))))
}
tau.hat <- sapply(idx, tau)
tau.opt <- which.min(tau.hat) + K
tau.bp <- tau.opt + 1
dt <- c(rep(0, tau.opt), rep(1, N - tau.opt))
if(!trend & is.null(season)){
rhs.aux <- dt
} else {
rhs.aux <- cbind(dt, rhs[, -c((ncol(rhs)-K*ncol(x)+1):ncol(rhs))])
}
reg.opt <- lm(lhs ~ rhs.aux)
dt <- c(rep(0, tau.opt), rep(1, Ntot - tau.opt))
uv <- c(rep(1, Ntot))
if (!trend) {
if (!is.null(season)) {
yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - dums %*% coef(reg.opt)[3:(2 + season - 1), ]
}else{
yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ])
}
}else if (trend){
trd <- 1:Ntot
if (!is.null(season)) {
yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - dums %*% coef(reg.opt)[3:(2 + season - 1), ] - trd %*% t(coef(reg.opt)[season + 2, ])
}else{
yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - trd %*% t(coef(reg.opt)[3, ])
}
}
x <- na.omit(yfit)
N <- nrow(x)
spec <- "transitory"
Z <- embed(diff(x), K)
Z0 <- Z[, 1:P]
Z1 <- Z[, -c(1:P)]
ZK <- x[-N, ][K:(N - 1), ]
idx <- 0:(P - 1)
if (trend) {
cvals <- matrix(c(5.423, 13.784, 25.931, 42.083, 61.918, 6.785, 15.826, 28.455, 45.204, 65.662, 10.042, 19.854, 33.757, 51.601, 73.116), nrow=5, ncol=3)
model <- "with linear trend in shift correction"
}else if(!trend){
cvals <- matrix(c(2.996, 10.446, 21.801, 36.903, 55.952, 4.118, 12.276, 24.282, 40.067, 59.749, 6.888, 16.420, 29.467, 46.305, 67.170), nrow=5, ncol=3)
model <- "without linear trend in shift correction"
}
N <- nrow(Z0)
M00 <- crossprod(Z0)/N
M11 <- crossprod(Z1)/N
MKK <- crossprod(ZK)/N
M01 <- crossprod(Z0, Z1)/N
M0K <- crossprod(Z0, ZK)/N
MK0 <- crossprod(ZK, Z0)/N
M10 <- crossprod(Z1, Z0)/N
M1K <- crossprod(Z1, ZK)/N
MK1 <- crossprod(ZK, Z1)/N
M11inv <- solve(M11)
R0 <- Z0 - t(M01 %*% M11inv %*% t(Z1))
RK <- ZK - t(MK1 %*% M11inv %*% t(Z1))
S00 <- M00 - M01 %*% M11inv %*% M10
S0K <- M0K - M01 %*% M11inv %*% M1K
SK0 <- MK0 - MK1 %*% M11inv %*% M10
SKK <- MKK - MK1 %*% M11inv %*% M1K
Ctemp <- chol(SKK, pivot = TRUE)
pivot <- attr(Ctemp, "pivot")
oo <- order(pivot)
C <- t(Ctemp[, oo])
Cinv <- solve(C)
S00inv <- solve(S00)
valeigen <- eigen(Cinv %*% SK0 %*% S00inv %*% S0K %*% t(Cinv))
lambda <- valeigen$values
e <- valeigen$vector
V <- t(Cinv) %*% e
rownames(V) <- colnames(x)
Vorg <- V
V <- sapply(1:P, function(x) V[, x]/V[1, x])
W <- S0K %*% V %*% solve(t(V) %*% SKK %*% V)
PI <- S0K %*% solve(SKK)
DELTA <- S00 - S0K %*% V %*% solve(t(V) %*% SKK %*% V) %*%
t(V) %*% SK0
GAMMA <- M01 %*% M11inv - PI %*% MK1 %*% M11inv
type <- "trace statistic"
teststat <- as.matrix(rev(sapply(idx, function(x) N * sum(log(1 + lambda[(x + 1):P])))))
colnames(teststat) <- "trace"
if (arrsel > 5) {
cval <- NULL
} else {
cval <- round(cvals[1:arrsel, ], 2)
colnames(cval) <- c("10pct", "5pct", "1pct")
rownames(cval) <- c(paste("r <= ", (arrsel - 1):1, " |", sep = ""), "r = 0 |")
}
temp1 <- NULL
for (i in 1:(K - 1)) {
temp <- paste(colnames(x), ".dl", i, sep = "")
temp1 <- c(temp1, temp)
}
colnames(Z1) <- temp1
colnames(ZK) <- paste(colnames(x), "l1", sep=".")
colnames(Z0) <- paste(colnames(x), "d", sep=".")
colnames(V) <- colnames(ZK)
rownames(V) <- colnames(ZK)
colnames(W) <- colnames(V)
rownames(W) <- colnames(x)
colnames(Vorg) <- colnames(V)
rownames(Vorg) <- rownames(V)
rownames(PI) <- colnames(x)
colnames(PI) <- colnames(W)
colnames(R0) <- paste("R0", colnames(Z0), sep = ".")
colnames(RK) <- paste("RK", colnames(ZK), sep = ".")
new("ca.jo", x = x, Z0 = Z0, Z1 = Z1, ZK = ZK, type = type, model = model, ecdet = "none", lag = K, P = arrsel,
season = season, dumvar = NULL, cval = cval, teststat = as.vector(teststat),
lambda = lambda, Vorg = Vorg, V = V, W = W, PI = PI,
DELTA = DELTA, GAMMA = GAMMA, R0 = R0, RK = RK, bp = tau.bp,
test.name = "Johansen-Procedure")
}
|