[go: up one dir, main page]

File: cajolst.R

package info (click to toggle)
urca 1.3-0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 2,428 kB
  • sloc: fortran: 501; makefile: 2
file content (170 lines) | stat: -rw-r--r-- 5,978 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
##
## cajolst
##
cajolst <- function (x, trend = TRUE, K = 2, season = NULL) 
{
    x <- as.matrix(x)
    K <- as.integer(K)
    if(K < 2){
      stop("\nK must be at least K=2.\n")
    }
    P <- ncol(x)
    arrsel <- P
    N <- nrow(x)
    if (!is.null(season)) {
        s <- season - 1
    }
    else {
        s <- 0
    }
    if (N * P < P + s * P + K * P^2 + P * (P + 1)/2) 
        stop("\nInsufficient degrees of freedom.\n")
    if (P > 5) 
        warning("\nToo many variables, critical values cannot be computed.\n")
    if (!(is.null(season))) {
        dum <- (diag(season) - 1/season)[, -season]
        dums <- dum
        while (nrow(dums) < N) {
            dums <- rbind(dums, dum)
        }
        dums <- dums[1:N, ]
        if (NA %in% x) {
            idx.NA <- 1:N
            ind <- as.logical(sapply(idx.NA, function(z) sum(is.na(x[z, 
                ]) * 1)))
            ind2 <- ind * (1:N)
            dums <- dums[-ind2, ]
        }
    }
    x2 <- na.omit(x)
    Ntot <- nrow(x2)
    y <- embed(x2, (K + 1))
    rhs <- y[, -c(1:P)]
    if (!trend) {
        rhs <- y[, -c(1:P)]
    }
    else {
        trd <- seq(K + 1, nrow(y) + K)
        rhs <- cbind(trd, y[, -c(1:P)])
    }
    N <- nrow(y)
    if (!(is.null(season))) {
        rhs <- cbind(dums[-(1:K), ], rhs)
    }
    lhs <- y[, 1:P]
    idx <- 1:(N - 1)
    tau <- function(t) {
        dt <- c(rep(0, t), rep(1, N - t))
        det(crossprod(resid(lm(lhs ~ dt + rhs))))
    }
    tau.hat <- sapply(idx, tau)
    tau.opt <- which.min(tau.hat) + K
    tau.bp <- tau.opt + 1
    dt <- c(rep(0, tau.opt), rep(1, N - tau.opt))
    if(!trend & is.null(season)){
      rhs.aux <- dt
    } else {
      rhs.aux <- cbind(dt, rhs[, -c((ncol(rhs)-K*ncol(x)+1):ncol(rhs))])
    }
    reg.opt <- lm(lhs ~ rhs.aux)
    dt <- c(rep(0, tau.opt), rep(1, Ntot - tau.opt))
    uv <- c(rep(1, Ntot))
    if (!trend) {
        if (!is.null(season)) {
            yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - dums %*% coef(reg.opt)[3:(2 + season - 1), ]
        }else{
            yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ])
        }
    }else if (trend){
        trd <- 1:Ntot
        if (!is.null(season)) {
            yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - dums %*% coef(reg.opt)[3:(2 + season - 1), ] - trd %*% t(coef(reg.opt)[season + 2, ])
        }else{
            yfit <- x - uv%*%t(coef(reg.opt)[1, ]) - dt %*% t(coef(reg.opt)[2, ]) - trd %*% t(coef(reg.opt)[3, ])
        }
    }
    x <- na.omit(yfit)
    N <- nrow(x)
    spec <- "transitory"
    Z <- embed(diff(x), K)
    Z0 <- Z[, 1:P]
    Z1 <- Z[, -c(1:P)]
    ZK <- x[-N, ][K:(N - 1), ]
    idx <- 0:(P - 1)
    if (trend) {
      cvals <- matrix(c(5.423, 13.784, 25.931, 42.083, 61.918, 6.785, 15.826, 28.455, 45.204, 65.662, 10.042, 19.854, 33.757, 51.601, 73.116), nrow=5, ncol=3)
      model <- "with linear trend in shift correction"
    }else if(!trend){
      cvals <- matrix(c(2.996, 10.446, 21.801, 36.903, 55.952, 4.118, 12.276, 24.282, 40.067, 59.749, 6.888, 16.420, 29.467, 46.305, 67.170), nrow=5, ncol=3)
      model <- "without linear trend in shift correction"
    }
    N <- nrow(Z0)
    M00 <- crossprod(Z0)/N
    M11 <- crossprod(Z1)/N
    MKK <- crossprod(ZK)/N
    M01 <- crossprod(Z0, Z1)/N
    M0K <- crossprod(Z0, ZK)/N
    MK0 <- crossprod(ZK, Z0)/N
    M10 <- crossprod(Z1, Z0)/N
    M1K <- crossprod(Z1, ZK)/N
    MK1 <- crossprod(ZK, Z1)/N
    M11inv <- solve(M11)
    R0 <- Z0 - t(M01 %*% M11inv %*% t(Z1))
    RK <- ZK - t(MK1 %*% M11inv %*% t(Z1))
    S00 <- M00 - M01 %*% M11inv %*% M10
    S0K <- M0K - M01 %*% M11inv %*% M1K
    SK0 <- MK0 - MK1 %*% M11inv %*% M10
    SKK <- MKK - MK1 %*% M11inv %*% M1K
    Ctemp <- chol(SKK, pivot = TRUE)
    pivot <- attr(Ctemp, "pivot")
    oo <- order(pivot)
    C <- t(Ctemp[, oo])
    Cinv <- solve(C)
    S00inv <- solve(S00)
    valeigen <- eigen(Cinv %*% SK0 %*% S00inv %*% S0K %*% t(Cinv))
    lambda <- valeigen$values
    e <- valeigen$vector
    V <- t(Cinv) %*% e
    rownames(V) <- colnames(x)
    Vorg <- V
    V <- sapply(1:P, function(x) V[, x]/V[1, x])
    W <- S0K %*% V %*% solve(t(V) %*% SKK %*% V)
    PI <- S0K %*% solve(SKK)
    DELTA <- S00 - S0K %*% V %*% solve(t(V) %*% SKK %*% V) %*% 
        t(V) %*% SK0
    GAMMA <- M01 %*% M11inv - PI %*% MK1 %*% M11inv
    type <- "trace statistic"
    teststat <- as.matrix(rev(sapply(idx, function(x) N * sum(log(1 + lambda[(x + 1):P])))))
    colnames(teststat) <- "trace"
    if (arrsel > 5) {
      cval <- NULL
    } else {
      cval <- round(cvals[1:arrsel, ], 2)
      colnames(cval) <- c("10pct", "5pct", "1pct")
      rownames(cval) <- c(paste("r <= ", (arrsel - 1):1, " |", sep = ""), "r = 0  |")
    }
    temp1 <- NULL
    for (i in 1:(K - 1)) {
      temp <- paste(colnames(x), ".dl", i, sep = "")
      temp1 <- c(temp1, temp)
    }
    colnames(Z1) <- temp1
    colnames(ZK) <- paste(colnames(x), "l1", sep=".")
    colnames(Z0) <- paste(colnames(x), "d", sep=".")
    colnames(V) <- colnames(ZK)
    rownames(V) <- colnames(ZK)
    colnames(W) <- colnames(V)
    rownames(W) <- colnames(x)
    colnames(Vorg) <- colnames(V)
    rownames(Vorg) <- rownames(V)
    rownames(PI) <- colnames(x)
    colnames(PI) <- colnames(W)
    colnames(R0) <- paste("R0", colnames(Z0), sep = ".")
    colnames(RK) <- paste("RK", colnames(ZK), sep = ".")
    
    new("ca.jo", x = x, Z0 = Z0, Z1 = Z1, ZK = ZK, type = type, model = model, ecdet = "none", lag = K, P = arrsel, 
        season = season, dumvar = NULL, cval = cval, teststat = as.vector(teststat), 
        lambda = lambda, Vorg = Vorg, V = V, W = W, PI = PI, 
        DELTA = DELTA, GAMMA = GAMMA, R0 = R0, RK = RK, bp = tau.bp, 
        test.name = "Johansen-Procedure")
}