1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
##
## Johansen Procedure
##
ca.jo <- function(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2, spec = c("longrun", "transitory"), season = NULL, dumvar = NULL)
{
x <- as.matrix(x)
colnames(x) <- make.names(colnames(x))
type <- match.arg(type)
ecdet <- match.arg(ecdet)
spec <- match.arg(spec)
K <- as.integer(K)
if (K < 2) {
stop("\nK must be at least K=2.\n")
}
P <- ncol(x)
arrsel <- P
N <- nrow(x)
if (!is.null(season)) {
s <- season - 1
} else {
s <- 0
}
if (N * P < P + s * P + K * P^2 + P * (P + 1)/2)
stop("\nInsufficient degrees of freedom.\n")
if (P > 11)
warning("\nToo many variables, critical values cannot be computed.\n")
##
## Check of NA's in x
## (create index of NA entries)
##
if (NA %in% x) {
idx.NA <- 1:N
ind <- as.logical(sapply(idx.NA, function(z) sum(is.na(x[z, ]) * 1)))
ind2 <- ind * (1:N)
}
##
## Setting seasonal dummies
## (if applicable)
##
if (!(is.null(season))) {
dum <- (diag(season) - 1/season)[, -season]
dums <- dum
while (nrow(dums) < N) {
dums <- rbind(dums, dum)
}
dums <- dums[1:N, ]
if (NA %in% x) {
dums <- dums[-ind2, ]
}
colnames(dums) <- paste("sd", 1:ncol(dums), sep="")
}
##
## Setting dummy variables
## (if applicable)
##
if (!(is.null(dumvar))) {
dumvar <- as.matrix(dumvar)
colnames(dumvar) <- make.names(colnames(dumvar))
if(is.null(colnames(dumvar))){
dumcols <- ncol(dumvar)
colnames(dumvar) <- paste("exo", 1:dumcols, sep = "")
warning("\nNo column names in 'dumvar', using prefix 'exo' instead.\n")
}
if (!(nrow(dumvar) == nrow(x))) {
stop("\nUnequal row length between dummy variables and x matrix.\n")
}
if (NA %in% x) {
dumvar <- dumvar[-ind2, ]
}
}
##
## Setting trend
## (if applicable)
##
if(ecdet == "trend"){
trend <- 1:nrow(x)
if (NA %in% x) {
trend <- trend[-ind2]
}
}
x <- na.omit(x)
N <- nrow(x)
Z <- embed(diff(x), K)
Z0 <- Z[, 1:P]
##
## Critival values of tests
##
cv.none <- array(c(6.5, 12.91, 18.9, 24.78, 30.84, 36.25, 42.06, 48.43, 54.01, 59., 65.07, 8.18, 14.90, 21.07, 27.14, 33.32, 39.43, 44.91, 51.07, 57.00, 62.42, 68.27, 11.65, 19.19, 25.75, 32.14, 38.78, 44.59, 51.30, 57.07, 63.37, 68.61, 74.36, 6.50, 15.66, 28.71, 45.23, 66.49, 85.18, 118.99, 151.38, 186.54, 226.34, 269.53, 8.18, 17.95, 31.52, 48.28, 70.6, 90.39, 124.25, 157.11, 192.84, 232.49, 277.39, 11.65, 23.52, 37.22, 55.43, 78.87, 104.20, 136.06, 168.92, 204.79, 246.27, 292.65), c(11, 3, 2))
cv.const <- array(c(7.52, 13.75, 19.77, 25.56, 31.66, 37.45, 43.25, 48.91, 54.35, 60.25, 66.02, 9.24, 15.67, 22.00, 28.14, 34.40, 40.30, 46.45, 52.00, 57.42, 63.57, 69.74, 12.97, 20.20, 26.81, 33.24, 39.79, 46.82, 51.91, 57.95, 63.71, 69.94, 76.63, 7.52, 17.85, 32.00, 49.65, 71.86, 97.18, 126.58, 159.48, 196.37, 236.54, 282.45, 9.24, 19.96, 34.91, 53.12, 76.07, 102.14, 131.70, 165.58, 202.92, 244.15, 291.40, 12.97, 24.60, 41.07, 60.16, 84.45, 111.01, 143.09, 177.20, 215.74, 257.68, 307.64), c(11, 3, 2))
cv.trend <- array(c(10.49, 16.85, 23.11, 29.12, 34.75, 40.91, 46.32, 52.16, 57.87, 63.18, 69.26, 12.25, 18.96, 25.54, 31.46, 37.52, 43.97, 49.42, 55.50, 61.29, 66.23, 72.72, 16.26, 23.65, 30.34, 36.65, 42.36, 49.51, 54.71, 62.46, 67.88, 73.73, 79.23, 10.49, 22.76, 39.06, 59.14, 83.20, 110.42, 141.01, 176.67, 215.17, 256.72, 303.13, 12.25, 25.32, 42.44, 62.99, 87.31, 114.90, 146.76, 182.82, 222.21, 263.42, 310.81, 16.26, 30.45, 48.45, 70.05, 96.58, 124.75, 158.49, 196.08, 234.41, 279.07, 327.45), c(11, 3, 2))
if (ecdet == "none") {
cvals <- cv.none
} else if (ecdet == "const") {
cvals <- cv.const
} else if (ecdet == "trend") {
cvals <- cv.trend
}
##
## Setting of relevant matrices
##
if (ecdet == "const") {
if (spec == "longrun") {
ZK <- cbind(x[-c((N - K + 1):N), ], 1)
Lnotation <- K
} else if (spec == "transitory") {
ZK <- cbind(x[-N, ], 1)[K:(N - 1), ]
Lnotation <- 1
}
colnames(ZK) <- c(paste(colnames(x), ".l", Lnotation, sep=""), "constant")
Z1 <- Z[, -c(1:P)]
temp1 <- NULL
for(i in 1:(K-1)){
temp <- paste(colnames(x), ".dl", i, sep="")
temp1 <- c(temp1, temp)
}
colnames(Z1) <- temp1
P <- P + 1
idx <- 0:(P - 2)
model <- "without linear trend and constant in cointegration"
} else if(ecdet == "none"){
if (spec == "longrun") {
ZK <- x[-c((N - K + 1):N), ]
Lnotation <- K
}
else if (spec == "transitory") {
ZK <- x[-N, ][K:(N - 1), ]
Lnotation <- 1
}
colnames(ZK) <- paste(colnames(x), ".l", Lnotation, sep="")
Z1 <- Z[, -c(1:P)]
Z1 <- cbind(1, Z1)
temp1 <- NULL
for(i in 1:(K-1)){
temp <- paste(colnames(x), ".dl", i, sep="")
temp1 <- c(temp1, temp)
}
temp1 <- c("constant", temp1)
colnames(Z1) <- temp1
idx <- 0:(P - 1)
model <- "with linear trend"
} else if(ecdet == "trend"){
if(spec == "longrun") {
ZK <- cbind(x[-c((N - K + 1):N), ], trend[-c((N - K + 1):N)])
Lnotation <- K
} else if (spec == "transitory") {
ZK <- cbind(x[-N, ], trend[-N])[K:(N - 1), ]
Lnotation <- 1
}
colnames(ZK) <- c(paste(colnames(x), ".l", Lnotation, sep=""), paste("trend.l", Lnotation, sep = ""))
Z1 <- Z[, -c(1:P)]
Z1 <- cbind(1, Z1)
temp1 <- NULL
for(i in 1:(K-1)){
temp <- paste(colnames(x), ".dl", i, sep="")
temp1 <- c(temp1, temp)
}
temp1 <- c("constant", temp1)
colnames(Z1) <- temp1
P <- P + 1
idx <- 0:(P - 2)
model <- "with linear trend in cointegration"
}
N <- nrow(Z0)
if (!(is.null(season))) {
if(ecdet == "const") {
Z1 <- cbind(dums[-(1:K), ], Z1)
} else {
Z1 <- cbind(Z1[, 1], dums[-(1:K), ], Z1[, -1])
colnames(Z1) <- c("constant", colnames(Z1)[-1])
}
}
if (!(is.null(dumvar))) {
tmp <- colnames(Z1)
if(ecdet == "const"){
Z1 <- cbind(dumvar[-(1:K), ], Z1)
colnames(Z1) <- c(colnames(dumvar), tmp)
} else {
Z1 <- cbind(Z1[, 1], dumvar[-(1:K), ], Z1[, -1])
colnames(Z1) <- c("constant", colnames(dumvar), tmp[-1])
}
}
M00 <- crossprod(Z0)/N
M11 <- crossprod(Z1)/N
MKK <- crossprod(ZK)/N
M01 <- crossprod(Z0, Z1)/N
M0K <- crossprod(Z0, ZK)/N
MK0 <- crossprod(ZK, Z0)/N
M10 <- crossprod(Z1, Z0)/N
M1K <- crossprod(Z1, ZK)/N
MK1 <- crossprod(ZK, Z1)/N
M11inv <- solve(M11)
R0 <- Z0 - t(M01 %*% M11inv %*% t(Z1))
RK <- ZK - t(MK1 %*% M11inv %*% t(Z1))
S00 <- M00 - M01 %*% M11inv %*% M10
S0K <- M0K - M01 %*% M11inv %*% M1K
SK0 <- MK0 - MK1 %*% M11inv %*% M10
SKK <- MKK - MK1 %*% M11inv %*% M1K
Ctemp <- chol(SKK, pivot = TRUE)
pivot <- attr(Ctemp, "pivot")
oo <- order(pivot)
C <- t(Ctemp[, oo])
Cinv <- solve(C)
S00inv <- solve(S00)
valeigen <- eigen(Cinv %*% SK0 %*% S00inv %*% S0K %*% t(Cinv))
lambda <- valeigen$values
e <- valeigen$vector
V <- t(Cinv) %*% e
Vorg <- V
V <- sapply(1:P, function(x) V[, x]/V[1, x])
W <- S0K %*% V %*% solve(t(V) %*% SKK %*% V)
PI <- S0K %*% solve(SKK)
DELTA <- S00 - S0K %*% V %*% solve(t(V) %*% SKK %*% V) %*% t(V) %*% SK0
GAMMA <- M01 %*% M11inv - PI %*% MK1 %*% M11inv
if (type == "trace") {
type <- "trace statistic"
teststat <- as.matrix(rev(sapply(idx, function(x) -N * sum(log(1 - lambda[(x + 1):P])))))
colnames(teststat) <- "trace"
if (arrsel > 11) {
cval <- NULL
} else {
cval <- round(cvals[1:arrsel, , 2], 2)
colnames(cval) <- c("10pct", "5pct", "1pct")
rownames(cval) <- c(paste("r <= ", (arrsel - 1):1, " |", sep = ""), "r = 0 |")
}
} else if (type == "eigen") {
type <- "maximal eigenvalue statistic (lambda max)"
teststat <- as.matrix(rev(sapply(idx, function(x) -N * log(1 - lambda[x + 1]))))
colnames(teststat) <- "lambda max."
if (arrsel > 11) {
cval <- NULL
} else {
cval <- round(cvals[1:arrsel, , 1], 2)
colnames(cval) <- c("10pct", "5pct", "1pct")
rownames(cval) <- c(paste("r <= ", (arrsel - 1):1, " |", sep = ""), "r = 0 |")
}
}
colnames(V) <- colnames(ZK)
rownames(V) <- colnames(ZK)
rownames(W) <- paste(colnames(x), ".d", sep = "")
colnames(W) <- colnames(ZK)
colnames(Vorg) <- colnames(V)
rownames(Vorg) <- rownames(V)
rownames(PI) <- rownames(W)
colnames(PI) <- colnames(W)
colnames(Z0) <- paste(colnames(x), ".d", sep="")
colnames(R0) <- paste("R0", colnames(Z0), sep=".")
colnames(RK) <- paste("RK", colnames(ZK), sep=".")
rownames(GAMMA) <- rownames(W)
new("ca.jo", x = x, Z0 = Z0, Z1 = Z1, ZK = ZK, type = type, model = model, ecdet = ecdet, lag = K, P = arrsel, season = season, dumvar = dumvar, cval = cval, teststat = as.vector(teststat), lambda = lambda, Vorg = Vorg, V = V, W = W, PI = PI, DELTA = DELTA, GAMMA = GAMMA, R0 = R0, RK = RK, bp = NA, test.name = "Johansen-Procedure", spec = spec, call = match.call())
}
|