1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
|
"""
A class that represents a unit symbol.
"""
import copy
import itertools
import math
from functools import lru_cache
from numbers import Number as numeric_type
import numpy as np
from sympy import (
Add,
Basic,
Expr,
Float,
Mod,
Mul,
Number,
Pow,
Rational,
Symbol,
floor,
latex,
sympify,
)
from sympy.core.numbers import One
import unyt.dimensions as dims
from unyt._parsing import parse_unyt_expr
from unyt._physical_ratios import speed_of_light_cm_per_s
from unyt.dimensions import (
angle,
base_dimensions,
current_mks,
dimensionless,
logarithmic,
temperature,
)
from unyt.equivalencies import equivalence_registry
from unyt.exceptions import (
InvalidUnitOperation,
MissingMKSCurrent,
MKSCGSConversionError,
UnitConversionError,
UnitParseError,
UnitsNotReducible,
)
from unyt.unit_registry import _lookup_unit_symbol, default_unit_registry
from unyt.unit_systems import _split_prefix
sympy_one = sympify(1)
def _get_latex_representation(expr, registry):
symbol_table = {}
for ex in expr.free_symbols:
try:
symbol_table[ex] = registry.lut[str(ex)][3]
except KeyError:
symbol_table[ex] = r"\rm{" + str(ex).replace("_", r"\ ") + "}"
# invert the symbol table dict to look for keys with identical values
invert_symbols = {}
for key, value in symbol_table.items():
if value not in invert_symbols:
invert_symbols[value] = [key]
else:
invert_symbols[value].append(key)
# if there are any units with identical latex representations, substitute
# units to avoid uncanceled terms in the final latex expression.
for val in invert_symbols:
symbols = invert_symbols[val]
for i in range(1, len(symbols)):
expr = expr.subs(symbols[i], symbols[0])
prefix = None
l_expr = expr
if isinstance(expr, Mul):
coeffs = expr.as_coeff_Mul()
if coeffs[0] == 1 or not isinstance(coeffs[0], Number):
l_expr = coeffs[1]
else:
l_expr = coeffs[1]
prefix = Float(coeffs[0], 2)
latex_repr = latex(
l_expr,
symbol_names=symbol_table,
mul_symbol="dot",
fold_frac_powers=True,
fold_short_frac=True,
)
if prefix is not None:
latex_repr = latex(prefix, mul_symbol="times") + "\\ " + latex_repr
if latex_repr == "1":
return ""
else:
return latex_repr
class _ImportCache:
__slots__ = ["_ua", "_uq"]
def __init__(self):
self._ua = None
self._uq = None
@property
def ua(self):
if self._ua is None:
from unyt.array import unyt_array
self._ua = unyt_array
return self._ua
@property
def uq(self):
if self._uq is None:
from unyt.array import unyt_quantity
self._uq = unyt_quantity
return self._uq
_import_cache_singleton = _ImportCache()
class Unit:
"""
A symbolic unit, using sympy functionality. We only add "dimensions" so
that sympy understands relations between different units.
"""
__slots__ = [
"expr",
"is_atomic",
"base_value",
"base_offset",
"dimensions",
"_latex_repr",
"registry",
"is_Unit",
]
# Set some assumptions for sympy.
is_positive = True # make sqrt(m**2) --> m
is_commutative = True
is_number = False
__array_priority__ = 3.0
def __new__(
cls,
unit_expr=sympy_one,
base_value=None,
base_offset=0.0,
dimensions=None,
registry=None,
latex_repr=None,
):
"""
Create a new unit. May be an atomic unit (like a gram) or combinations
of atomic units (like g / cm**3).
Parameters
----------
unit_expr : Unit object, sympy.core.expr.Expr object, or str
The symbolic unit expression.
base_value : float
The unit's value in yt's base units.
base_offset : float
The offset necessary to normalize temperature units to a common
zero point.
dimensions : sympy.core.expr.Expr
A sympy expression representing the dimensionality of this unit.
It must contain only mass, length, time, temperature and angle
symbols.
registry : UnitRegistry object
The unit registry we use to interpret unit symbols.
latex_repr : string
A string to render the unit as LaTeX
"""
unit_cache_key = None
# Simplest case. If user passes a Unit object, just use the expr.
if hasattr(unit_expr, "is_Unit"):
# grab the unit object's sympy expression.
unit_expr = unit_expr.expr
elif hasattr(unit_expr, "units") and hasattr(unit_expr, "value"):
# something that looks like a unyt_array, grab the unit and value
if unit_expr.shape != ():
raise UnitParseError(
"Cannot create a unit from a non-scalar unyt_array, "
f"received: {unit_expr}"
)
value = unit_expr.value
if value == 1:
unit_expr = unit_expr.units.expr
else:
unit_expr = unit_expr.value * unit_expr.units.expr
# Parse a text unit representation using sympy's parser
elif isinstance(unit_expr, (str, bytes)):
if isinstance(unit_expr, bytes):
unit_expr = unit_expr.decode("utf-8")
# this cache substantially speeds up unit conversions
if registry and unit_expr in registry._unit_object_cache:
return registry._unit_object_cache[unit_expr]
unit_cache_key = unit_expr
unit_expr = parse_unyt_expr(unit_expr)
# Make sure we have an Expr at this point.
if not isinstance(unit_expr, Expr):
raise UnitParseError(
"Unit representation must be a string or "
f"sympy Expr. '{unit_expr}' has type '{type(unit_expr)}'."
)
if dimensions is None and unit_expr is sympy_one:
dimensions = dimensionless
if registry is None:
# Caller did not set the registry, so use the default.
registry = default_unit_registry
# done with argument checking...
# see if the unit is atomic.
is_atomic = False
if isinstance(unit_expr, Symbol):
is_atomic = True
#
# check base_value and dimensions
#
if base_value is not None:
# check that base_value is a float or can be converted to one
try:
base_value = float(base_value)
except ValueError:
raise UnitParseError(
"Could not use base_value as a float. "
f"base_value is '{base_value}' (type {type(base_value)})."
)
# check that dimensions is valid
if dimensions is not None:
_validate_dimensions(dimensions)
else:
# lookup the unit symbols
unit_data = _get_unit_data_from_expr(unit_expr, registry.lut)
base_value = unit_data[0]
dimensions = unit_data[1]
if len(unit_data) > 2:
base_offset = unit_data[2]
latex_repr = unit_data[3]
else:
base_offset = 0.0
# Create obj with superclass construct.
obj = super().__new__(cls)
# Attach attributes to obj.
obj.expr = unit_expr
obj.is_atomic = is_atomic
obj.base_value = base_value
obj.base_offset = base_offset
obj.dimensions = dimensions
obj._latex_repr = latex_repr
obj.registry = registry
# lets us avoid isinstance calls
obj.is_Unit = True
# if we parsed a string unit expression, cache the result
# for faster lookup later
if unit_cache_key is not None:
registry._unit_object_cache[unit_cache_key] = obj
# Return `obj` so __init__ can handle it.
return obj
@property
def latex_repr(self):
"""A LaTeX representation for the unit
Examples
--------
>>> from unyt import g, cm
>>> (g/cm**3).units.latex_repr
'\\\\frac{\\\\rm{g}}{\\\\rm{cm}^{3}}'
"""
if self._latex_repr is not None:
return self._latex_repr
if self.expr.is_Atom:
expr = self.expr
else:
expr = self.expr.copy()
self._latex_repr = _get_latex_representation(expr, self.registry)
return self._latex_repr
@property
def units(self):
return self
def __hash__(self):
return int(self.registry.unit_system_id, 16) ^ hash(self.expr)
# end sympy conventions
def __repr__(self):
if self.expr == sympy_one:
return "(dimensionless)"
# @todo: don't use dunder method?
return self.expr.__repr__()
def __str__(self):
if self.expr == sympy_one:
return "dimensionless"
unit_str = self.expr.__str__()
if unit_str == "degC":
return "°C"
if unit_str == "delta_degC":
return "Δ°C"
if unit_str == "degF":
return "°F"
if unit_str == "delta_degF":
return "Δ°F"
# @todo: don't use dunder method?
return unit_str
#
# Start unit operations
#
def __add__(self, u):
raise InvalidUnitOperation("addition with unit objects is not allowed")
def __radd__(self, u):
raise InvalidUnitOperation("addition with unit objects is not allowed")
def __sub__(self, u):
raise InvalidUnitOperation("subtraction with unit objects is not allowed")
def __rsub__(self, u):
raise InvalidUnitOperation("subtraction with unit objects is not allowed")
def __iadd__(self, u):
raise InvalidUnitOperation(
"in-place operations with unit objects are not allowed"
)
def __isub__(self, u):
raise InvalidUnitOperation(
"in-place operations with unit objects are not allowed"
)
def __imul__(self, u):
raise InvalidUnitOperation(
"in-place operations with unit objects are not allowed"
)
def __itruediv__(self, u):
raise InvalidUnitOperation(
"in-place operations with unit objects are not allowed"
)
def __rmul__(self, u):
return self.__mul__(u)
def __mul__(self, u):
"""Multiply Unit with u (Unit object)."""
if not getattr(u, "is_Unit", False):
data = np.array(u, subok=True)
unit = getattr(u, "units", None)
if unit is not None:
if self.dimensions is logarithmic:
raise InvalidUnitOperation(
f"Tried to multiply '{self}' and '{unit}'."
)
units = unit * self
else:
units = self
if data.dtype.kind not in ("f", "u", "i", "c"):
raise InvalidUnitOperation(
f"Tried to multiply a Unit object with '{u}' (type {type(u)}). "
"This behavior is undefined."
)
if data.shape == ():
return _import_cache_singleton.uq(data, units, bypass_validation=True)
return _import_cache_singleton.ua(data, units, bypass_validation=True)
elif self.dimensions is logarithmic and not u.is_dimensionless:
raise InvalidUnitOperation(f"Tried to multiply '{self}' and '{u}'.")
elif u.dimensions is logarithmic and not self.is_dimensionless:
raise InvalidUnitOperation(f"Tried to multiply '{self}' and '{u}'.")
base_offset = 0.0
if self.base_offset or u.base_offset:
if u.dimensions in (temperature, angle) and self.is_dimensionless:
base_offset = u.base_offset
elif self.dimensions in (temperature, angle) and u.is_dimensionless:
base_offset = self.base_offset
else:
raise InvalidUnitOperation(
"Quantities with dimensions of angle or units of "
"Fahrenheit or Celsius cannot be multiplied."
)
return Unit(
self.expr * u.expr,
base_value=(self.base_value * u.base_value),
base_offset=base_offset,
dimensions=(self.dimensions * u.dimensions),
registry=self.registry,
)
def __truediv__(self, u):
"""Divide Unit by u (Unit object)."""
if not isinstance(u, Unit):
if isinstance(u, (numeric_type, list, tuple, np.ndarray)):
from unyt.array import unyt_quantity
return unyt_quantity(1.0, self) / u
else:
raise InvalidUnitOperation(
f"Tried to divide a Unit object by '{u}' (type {type(u)}). "
"This behavior is undefined."
)
elif self.dimensions is logarithmic and not u.is_dimensionless:
raise InvalidUnitOperation(f"Tried to divide '{self}' and '{u}'.")
elif u.dimensions is logarithmic and not self.is_dimensionless:
raise InvalidUnitOperation(f"Tried to divide '{self}' and '{u}'.")
base_offset = 0.0
if self.base_offset or u.base_offset:
if self.dimensions in (temperature, angle) and u.is_dimensionless:
base_offset = self.base_offset
else:
raise InvalidUnitOperation(
"Quantities with units of Farhenheit and Celsius cannot be divided."
)
return Unit(
self.expr / u.expr,
base_value=(self.base_value / u.base_value),
base_offset=base_offset,
dimensions=(self.dimensions / u.dimensions),
registry=self.registry,
)
def __rtruediv__(self, u):
return u * self**-1
def __pow__(self, p):
"""Take Unit to power p (float)."""
try:
p = Rational(str(p)).limit_denominator()
except (ValueError, TypeError):
raise InvalidUnitOperation(
f"Tried to take a Unit object to the power '{p}' (type {type(p)}). "
"Failed to cast it to a float."
)
if self.dimensions is logarithmic and p != 1:
raise InvalidUnitOperation(f"Tried to raise '{self}' to power '{p}'")
return Unit(
self.expr**p,
base_value=(self.base_value**p),
dimensions=(self.dimensions**p),
registry=self.registry,
)
def __eq__(self, u):
"""Test unit equality."""
return (
isinstance(u, Unit)
and math.isclose(self.base_value, u.base_value)
and math.isclose(self.base_offset, u.base_offset)
and (
# use 'is' comparison dimensions to avoid expensive sympy operation
self.dimensions is u.dimensions
# fall back to expensive sympy comparison
or self.dimensions == u.dimensions
)
)
def copy(self, *, deep=False):
expr = str(self.expr)
base_value = copy.deepcopy(self.base_value)
base_offset = copy.deepcopy(self.base_offset)
dimensions = copy.deepcopy(self.dimensions)
if deep:
registry = copy.deepcopy(self.registry)
else:
registry = copy.copy(self.registry)
return Unit(expr, base_value, base_offset, dimensions, registry)
def __deepcopy__(self, memodict=None):
return self.copy(deep=True)
#
# End unit operations
#
def same_dimensions_as(self, other_unit):
"""Test if the dimensions of *other_unit* are the same as this unit
Examples
--------
>>> from unyt import Msun, kg, mile
>>> Msun.units.same_dimensions_as(kg.units)
True
>>> Msun.units.same_dimensions_as(mile.units)
False
"""
# test first for 'is' equality to avoid expensive sympy operation
if self.dimensions is other_unit.dimensions:
return True
return (self.dimensions / other_unit.dimensions) == sympy_one
@property
def is_dimensionless(self):
"""Is this a dimensionless unit?
Returns
-------
True for a dimensionless unit, False otherwise
Examples
--------
>>> from unyt import count, kg
>>> count.units.is_dimensionless
True
>>> kg.units.is_dimensionless
False
"""
return self.dimensions is sympy_one
@property
def is_code_unit(self):
"""Is this a "code" unit?
Returns
-------
True if the unit consists of atom units that being with "code".
False otherwise
"""
for atom in self.expr.atoms():
if not (str(atom).startswith("code") or atom.is_Number):
return False
return True
def list_equivalencies(self):
"""Lists the possible equivalencies associated with this unit object
Examples
--------
>>> from unyt import km
>>> km.units.list_equivalencies()
spectral: length <-> spatial_frequency <-> frequency <-> energy
schwarzschild: mass <-> length
compton: mass <-> length
"""
from unyt.equivalencies import equivalence_registry
for k, v in equivalence_registry.items():
if self.has_equivalent(k):
print(v())
def has_equivalent(self, equiv):
"""
Check to see if this unit object as an equivalent unit in *equiv*.
Example
-------
>>> from unyt import km
>>> km.has_equivalent('spectral')
True
>>> km.has_equivalent('mass_energy')
False
"""
try:
this_equiv = equivalence_registry[equiv]()
except KeyError:
raise KeyError(f'No such equivalence "{equiv}".')
old_dims = self.dimensions
return old_dims in this_equiv._dims
def get_base_equivalent(self, unit_system=None):
"""Create and return dimensionally-equivalent units in a specified base.
>>> from unyt import g, cm
>>> (g/cm**3).get_base_equivalent('mks')
kg/m**3
>>> (g/cm**3).get_base_equivalent('solar')
Mearth/AU**3
"""
from unyt.unit_registry import _sanitize_unit_system
unit_system = _sanitize_unit_system(unit_system, self)
try:
conv_data = _check_em_conversion(
self.units, registry=self.registry, unit_system=unit_system
)
um = unit_system.units_map
if self.dimensions in um and self.expr == um[self.dimensions]:
return self.copy()
except MKSCGSConversionError:
raise UnitsNotReducible(self.units, unit_system)
if any(conv_data):
new_units, _ = _em_conversion(self, conv_data, unit_system=unit_system)
else:
try:
new_units = unit_system[self.dimensions]
except MissingMKSCurrent:
raise UnitsNotReducible(self.units, unit_system)
return Unit(new_units, registry=self.registry)
def get_cgs_equivalent(self):
"""Create and return dimensionally-equivalent cgs units.
Example
-------
>>> from unyt import kg, m
>>> (kg/m**3).get_cgs_equivalent()
g/cm**3
"""
return self.get_base_equivalent(unit_system="cgs")
def get_mks_equivalent(self):
"""Create and return dimensionally-equivalent mks units.
Example
-------
>>> from unyt import g, cm
>>> (g/cm**3).get_mks_equivalent()
kg/m**3
"""
return self.get_base_equivalent(unit_system="mks")
def get_conversion_factor(self, other_units, dtype=None):
"""Get the conversion factor and offset (if any) from one unit
to another
Parameters
----------
other_units: unit object
The units we want the conversion factor for
dtype: numpy dtype
The dtype to return the conversion factor as
Returns
-------
conversion_factor : float
old_units / new_units
offset : float or None
Offset between this unit and the other unit. None if there is
no offset.
Examples
--------
>>> from unyt import km, cm, degree_fahrenheit, degree_celsius
>>> km.get_conversion_factor(cm)
(100000.0, None)
>>> degree_celsius.get_conversion_factor(degree_fahrenheit)
(1.7999999999999998, -31.999999999999886)
"""
return _get_conversion_factor(self, other_units, dtype)
def latex_representation(self):
"""A LaTeX representation for the unit
Examples
--------
>>> from unyt import g, cm
>>> (g/cm**3).latex_representation()
'\\\\frac{\\\\rm{g}}{\\\\rm{cm}^{3}}'
"""
return self.latex_repr
def as_coeff_unit(self):
"""Factor the coefficient multiplying a unit
For units that are multiplied by a constant dimensionless
coefficient, returns a tuple containing the coefficient and
a new unit object for the unmultiplied unit.
Example
-------
>>> import unyt as u
>>> unit = (u.m**2/u.cm).simplify()
>>> unit
100*m
>>> unit.as_coeff_unit()
(100.0, m)
"""
coeff, mul = self.expr.as_coeff_Mul()
coeff = float(coeff)
ret = Unit(
mul,
self.base_value / coeff,
self.base_offset,
self.dimensions,
self.registry,
)
return coeff, ret
def simplify(self):
"""Return a new equivalent unit object with a simplified unit expression
>>> import unyt as u
>>> unit = (u.m**2/u.cm).simplify()
>>> unit
100*m
"""
expr = self.expr
self.expr = _cancel_mul(expr, self.registry)
return self
def _factor_pairs(expr):
factors = expr.as_ordered_factors()
expanded_factors = []
for f in factors:
if f.is_Number:
continue
base, exp = f.as_base_exp()
if exp.q != 1:
expanded_factors.append(base ** Mod(exp, 1))
exp = floor(exp)
if exp >= 0:
f = (base,) * exp
else:
f = (1 / base,) * abs(exp)
expanded_factors.extend(f)
return list(itertools.combinations(expanded_factors, 2))
def _create_unit_from_factor(factor, registry):
base, exp = factor.as_base_exp()
f = registry[str(base)]
return Unit(base, f[0], f[2], f[1], registry, f[3]) ** exp
def _cancel_mul(expr, registry):
pairs_to_consider = _factor_pairs(expr)
uncancelable_pairs = set()
while len(pairs_to_consider):
pair = pairs_to_consider.pop()
if pair in uncancelable_pairs:
continue
u1 = _create_unit_from_factor(pair[0], registry)
u2 = _create_unit_from_factor(pair[1], registry)
prod = u1 * u2
if prod.dimensions == 1:
expr = expr / pair[0]
expr = expr / pair[1]
value = prod.base_value
if value != 1:
if value.is_integer():
value = int(value)
expr *= value
else:
uncancelable_pairs.add(pair)
pairs_to_consider = _factor_pairs(expr)
return expr
#
# Unit manipulation functions
#
# map from dimensions in one unit system to dimensions in other system,
# canonical unit to convert to in that system, and floating point
# conversion factor
em_conversions = {
("C", dims.charge_mks): (dims.charge_cgs, "statC", 0.1 * speed_of_light_cm_per_s),
("statC", dims.charge_cgs): (dims.charge_mks, "C", 10.0 / speed_of_light_cm_per_s),
("T", dims.magnetic_field_mks): (dims.magnetic_field_cgs, "G", 1.0e4),
("G", dims.magnetic_field_cgs): (dims.magnetic_field_mks, "T", 1.0e-4),
("A", dims.current_mks): (dims.current_cgs, "statA", 0.1 * speed_of_light_cm_per_s),
("statA", dims.current_cgs): (
dims.current_mks,
"A",
10.0 / speed_of_light_cm_per_s,
),
("V", dims.electric_potential_mks): (
dims.electric_potential_cgs,
"statV",
1.0e-8 * speed_of_light_cm_per_s,
),
("statV", dims.electric_potential_cgs): (
dims.electric_potential_mks,
"V",
1.0e8 / speed_of_light_cm_per_s,
),
("Ω", dims.resistance_mks): (
dims.resistance_cgs,
"statohm",
1.0e9 / (speed_of_light_cm_per_s**2),
),
("statohm", dims.resistance_cgs): (
dims.resistance_mks,
"Ω",
1.0e-9 * speed_of_light_cm_per_s**2,
),
}
em_conversion_dims = [k[1] for k in em_conversions.keys()]
def _em_conversion(orig_units, conv_data, to_units=None, unit_system=None):
"""Convert between E&M & MKS base units.
If orig_units is a CGS (or MKS) E&M unit, conv_data contains the
corresponding MKS (or CGS) unit and scale factor converting between them.
This must be done by replacing the expression of the original unit
with the new one in the unit expression and multiplying by the scale
factor.
"""
conv_unit, canonical_unit, scale = conv_data
if conv_unit is None:
conv_unit = canonical_unit
new_expr = scale * canonical_unit.expr
if unit_system is not None:
# we don't know the to_units, so we get it directly from the
# conv_data
to_units = Unit(conv_unit.expr, registry=orig_units.registry)
new_units = Unit(new_expr, registry=orig_units.registry)
conv = new_units.get_conversion_factor(to_units)
return to_units, conv
@lru_cache(maxsize=128, typed=False)
def _check_em_conversion(unit, to_unit=None, unit_system=None, registry=None):
"""Check to see if the units contain E&M units
This function supports unyt's ability to convert data to and from E&M
electromagnetic units. However, this support is limited and only very
simple unit expressions can be readily converted. This function tries
to see if the unit is an atomic base unit that is present in the
em_conversions dict. If it does not contain E&M units, the function
returns an empty tuple. If it does contain an atomic E&M unit in
the em_conversions dict, it returns a tuple containing the unit to convert
to and scale factor. If it contains a more complicated E&M unit and we are
trying to convert between CGS & MKS E&M units, it raises an error.
"""
em_map = ()
if unit == to_unit or unit.dimensions not in em_conversion_dims:
return em_map
if unit.is_atomic:
prefix, unit_wo_prefix = _split_prefix(str(unit), unit.registry.lut)
else:
prefix, unit_wo_prefix = "", str(unit)
if (unit_wo_prefix, unit.dimensions) in em_conversions:
em_info = em_conversions[unit_wo_prefix, unit.dimensions]
em_unit = Unit(prefix + em_info[1], registry=registry)
if to_unit is None:
cmks_in_unit = current_mks in unit.dimensions.atoms()
cmks_in_unit_system = unit_system.units_map[current_mks]
cmks_in_unit_system = cmks_in_unit_system is not None
if cmks_in_unit and cmks_in_unit_system:
em_map = (unit_system[unit.dimensions], unit, 1.0)
else:
em_map = (None, em_unit, em_info[2])
elif to_unit.dimensions == em_unit.dimensions:
em_map = (to_unit, em_unit, em_info[2])
if em_map:
return em_map
if unit_system is None:
from unyt.unit_systems import unit_system_registry
unit_system = unit_system_registry["mks"]
for unit_atom in unit.expr.atoms():
if unit_atom.is_Number:
continue
bu = str(unit_atom)
budims = Unit(bu, registry=registry).dimensions
try:
if str(unit_system[budims]) == bu:
continue
except MissingMKSCurrent:
raise MKSCGSConversionError(unit)
return em_map
def _get_conversion_factor(old_units, new_units, dtype):
"""
Get the conversion factor between two units of equivalent dimensions. This
is the number you multiply data by to convert from values in `old_units` to
values in `new_units`.
Parameters
----------
old_units: str or Unit object
The current units.
new_units : str or Unit object
The units we want.
dtype: NumPy dtype
The dtype of the conversion factor
Returns
-------
conversion_factor : float
`old_units / new_units`
offset : float or None
Offset between the old unit and new unit.
"""
if old_units.dimensions != new_units.dimensions:
raise UnitConversionError(
old_units, old_units.dimensions, new_units, new_units.dimensions
)
old_basevalue = old_units.base_value
old_baseoffset = old_units.base_offset
new_basevalue = new_units.base_value
new_baseoffset = new_units.base_offset
ratio = old_basevalue / new_basevalue
if old_baseoffset == 0 and new_baseoffset == 0:
return (ratio, None)
else:
# the dimensions are either temperature or angle (lat, lon)
if old_units.dimensions == temperature:
# for degree Celsius, back out the SI prefix scaling from
# offset scaling for degree Fahrenheit
old_prefix, _ = _split_prefix(str(old_units), old_units.registry.lut)
if old_prefix != "":
old_baseoffset /= old_basevalue
new_prefix, _ = _split_prefix(str(new_units), new_units.registry.lut)
if new_prefix != "":
new_baseoffset /= new_basevalue
return ratio, ratio * old_baseoffset - new_baseoffset
#
# Helper functions
#
def _get_unit_data_from_expr(unit_expr, unit_symbol_lut):
"""
Grabs the total base_value and dimensions from a valid unit expression.
Parameters
----------
unit_expr: Unit object, or sympy Expr object
The expression containing unit symbols.
unit_symbol_lut: dict
Provides the unit data for each valid unit symbol.
"""
# Now for the sympy possibilities
if isinstance(unit_expr, Number):
if unit_expr is sympy_one:
return (1.0, sympy_one)
return (float(unit_expr), sympy_one)
if isinstance(unit_expr, Symbol):
return _lookup_unit_symbol(unit_expr.name, unit_symbol_lut)
if isinstance(unit_expr, Pow):
unit_data = _get_unit_data_from_expr(unit_expr.args[0], unit_symbol_lut)
power = unit_expr.args[1]
if isinstance(power, Symbol):
raise UnitParseError(f"Invalid unit expression '{unit_expr}'.")
conv = float(unit_data[0] ** power)
unit = unit_data[1] ** power
return (conv, unit)
if isinstance(unit_expr, Mul):
base_value = 1.0
dimensions = 1
for expr in unit_expr.args:
unit_data = _get_unit_data_from_expr(expr, unit_symbol_lut)
base_value *= unit_data[0]
dimensions *= unit_data[1]
return (float(base_value), dimensions)
raise UnitParseError(
f"Cannot parse for unit data from {str(unit_expr)!r}. Please supply "
"an expression of only Unit, Symbol, Pow, and Mul objects."
)
def _validate_dimensions(dimensions):
if isinstance(dimensions, Mul):
for dim in dimensions.args:
_validate_dimensions(dim)
elif isinstance(dimensions, Symbol):
if dimensions not in base_dimensions:
raise UnitParseError(
f"Dimensionality expression contains an unknown symbol '{dimensions}'."
)
elif isinstance(dimensions, Pow):
if not isinstance(dimensions.args[1], Number):
raise UnitParseError(
f"Dimensionality expression '{dimensions}' contains a "
"unit symbol as a power."
)
elif isinstance(dimensions, (Add, Number)):
if not isinstance(dimensions, One):
raise UnitParseError(
"Only dimensions that are instances of Pow, "
"Mul, or symbols in the base dimensions are "
f"allowed. Got dimensions '{dimensions}'"
)
elif not isinstance(dimensions, Basic):
raise UnitParseError(f"Bad dimensionality expression '{dimensions}'.")
def define_unit(
symbol, value, tex_repr=None, offset=None, prefixable=False, registry=None
):
"""
Define a new unit and add it to the specified unit registry.
Parameters
----------
symbol : string
The symbol for the new unit.
value : tuple or :class:`unyt.array.unyt_quantity`
The definition of the new unit in terms of some other units. For
example, one would define a new "mph" unit with ``(1.0, "mile/hr")``
or with ``1.0*unyt.mile/unyt.hr``
tex_repr : string, optional
The LaTeX representation of the new unit. If one is not supplied, it
will be generated automatically based on the symbol string.
offset : float, optional
The default offset for the unit. If not set, an offset of 0 is assumed.
prefixable : boolean, optional
Whether or not the new unit can use SI prefixes. Default: False
registry : :class:`unyt.unit_registry.UnitRegistry` or None
The unit registry to add the unit to. If None, then defaults to the
global default unit registry. If registry is set to None then the
unit object will be added as an attribute to the top-level :mod:`unyt`
namespace to ease working with the newly defined unit. See the example
below.
Examples
--------
>>> from unyt import day
>>> two_weeks = 14.0*day
>>> one_day = 1.0*day
>>> define_unit("two_weeks", two_weeks)
>>> from unyt import two_weeks
>>> print((3*two_weeks)/one_day)
42.0 dimensionless
"""
import unyt
from unyt.array import _iterable, unyt_quantity
if registry is None:
registry = default_unit_registry
if symbol in registry:
raise RuntimeError(
f"Unit symbol '{symbol}' already exists in the provided registry"
)
if not isinstance(value, unyt_quantity):
if _iterable(value) and len(value) == 2:
value = unyt_quantity(value[0], value[1], registry=registry)
else:
raise RuntimeError('"value" needs to be a quantity or (value, unit) tuple!')
base_value = float(value.in_base(unit_system="mks"))
dimensions = value.units.dimensions
registry.add(
symbol,
base_value,
dimensions,
prefixable=prefixable,
tex_repr=tex_repr,
offset=offset,
)
if registry is default_unit_registry:
u = Unit(symbol, registry=registry)
setattr(unyt, symbol, u)
NULL_UNIT = Unit()
|