1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
# coding: utf-8
"""Module with utils in order to define series of scan (TomoScanBase)"""
from __future__ import annotations
import logging
import numpy
from tomoscan.scanbase import TomoScanBase
from tomoscan.tomoobject import TomoObject
from tomoscan.utils.io import deprecated
from .factory import Factory
from .identifier import BaseIdentifier
_logger = logging.getLogger(__name__)
__all__ = [
"Serie",
"Series",
"sequences_to_series_from_sample_name",
"check_series_is_consistent_frm_sample_name",
"series_is_complete_from_group_size",
]
class Series(list):
"""
A series can be view as an extended list of :class:`TomoObject`.
This allow the user to define a relation between scans like:
.. image:: /_static/../img/serie_tomoscanbase_class_diag.png
"""
def __init__(
self,
name: str | None = None,
iterable: (
list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray | None
) = None,
use_identifiers=False,
) -> None:
if name is not None and not isinstance(name, str):
raise TypeError(
f"name should be None os an instance of str. Get {type(name)} instead"
)
self._name = "Unknow" if name is None else name
self.__use_identifiers = use_identifiers
if iterable is None:
iterable = []
super().__init__()
for item in iterable:
self.append(item)
@property
def name(self) -> str:
return self._name
@name.setter
def name(self, name: str):
if not isinstance(name, str):
raise TypeError("name is expected to be an instance of str")
self._name = name
@property
def use_identifiers(self):
return self.__use_identifiers
def append(self, object: TomoObject):
if not isinstance(object, TomoObject):
raise TypeError(
f"object is expected to be an instance of {TomoObject} not {type(object)}"
)
if self.use_identifiers:
super().append(object.get_identifier().to_str())
else:
super().append(object)
def remove(self, object: TomoObject):
if not isinstance(object, TomoObject):
raise TypeError(
f"object is expected to be an instance of {TomoObject} not {type(object)}"
)
if self.use_identifiers:
super().remove(object.get_identifier().to_str())
else:
super().remove(object)
def to_dict_of_str(self) -> dict:
"""
call for each scan DatasetIdentifier.to_str() if use dataset identifier.
Otherwise return a default list with dataset identifiers
"""
objects = []
for dataset in self:
if self.use_identifiers:
objects.append(dataset)
else:
objects.append(dataset.get_identifier().to_str())
return {
"objects": objects,
"name": self.name,
"use_identifiers": self.use_identifiers,
}
@staticmethod
def from_dict_of_str(dict_, factory=Factory, use_identifiers: bool | None = None):
"""
create a Series from it definition from a dictionary
:param_: dictionary containing the series to create
:param factory: factory to use in order to create scans defined from there Identifier (as an instance of DatasetIdentifier or is str representation)
:param use_identifiers: use_identifiers can be overwrite when creating the series
:return: created Series
"""
name = dict_["name"]
objects = dict_["objects"]
if use_identifiers is None:
use_identifiers = dict_.get("use_identifiers", False)
instanciated_scans = []
for tomo_obj in objects:
if isinstance(tomo_obj, (str, BaseIdentifier)):
instanciated_scans.append(
factory.create_tomo_object_from_identifier(identifier=tomo_obj)
)
else:
raise TypeError(
f"elements of dict_['objects'] are expected to be an instance of TomoObject, DatasetIdentifier or str representing a DatasetIdentifier. Not {type(tomo_obj)}"
)
return Series(
name=name, use_identifiers=use_identifiers, iterable=instanciated_scans
)
def __contains__(self, tomo_obj: BaseIdentifier):
if self.use_identifiers:
key = tomo_obj.get_identifier().to_str()
else:
key = tomo_obj
return super().__contains__(key)
def __eq__(self, other):
if not isinstance(other, Series):
return False
return self.name == other.name and super().__eq__(other)
def __ne__(self, other):
return not self.__eq__(other)
@deprecated(replacement="tomoscan.series.series", since_version="2.1")
class Serie(Series):
def __init__(self, name=None, iterable=None, use_identifiers=False):
super().__init__(name, iterable, use_identifiers)
def sequences_to_series_from_sample_name(
scans: list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray,
) -> tuple:
"""
create a series with the same sample name
:param scans: list, tuple or numpy.ndarray of TomoScanBase instances
:return: tuple of series if as_tuple_of_list is false else a tuple of list (of TomoScanBase)
"""
series = {}
for scan in scans:
if not isinstance(scan, TomoScanBase):
raise TypeError("Elements are expected to be instances of TomoScanBase")
if scan.sample_name is None:
_logger.warning(f"no scan sample found for {scan}")
if scan.sample_name not in series:
series[scan.sample_name] = Series(use_identifiers=False)
series[scan.sample_name].append(scan)
return tuple(series.values())
def check_series_is_consistent_frm_sample_name(
scans: list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray,
):
"""
Insure the provided group of scan is valid. Otherwise raise an error
:param scans: list, tuple or numpy.ndarray of TomoScanBase to check
"""
l_scans = set()
for scan in scans:
if not isinstance(scan, TomoScanBase):
raise TypeError("Elements are expected to be instance of TomoScanBase")
if scan in l_scans:
raise ValueError("{} is present at least twice")
elif len(l_scans) > 0:
first_scan = next(iter((l_scans)))
if first_scan.sample_name != scan.sample_name:
raise ValueError(
f"{scan} and {first_scan} are from two different sample: {scan.sample_name} and {first_scan.sample_name}"
)
l_scans.add(scan)
@deprecated(
replacement="check_series_is_consistent_frm_sample_name", since_version="2.1"
)
def check_serie_is_consistant_frm_sample_name(
scans: list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray,
):
return check_series_is_consistent_frm_sample_name(scans=scans)
def series_is_complete_from_group_size(
scans: list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray,
) -> bool:
"""
Insure the provided group of scan is valid. Otherwise raise an error
:param scans: list, tuple or numpy.ndarray of TomoScanBase to check
:return: True if the group is complete
"""
if len(scans) == 0:
return True
try:
check_series_is_consistent_frm_sample_name(scans=scans)
except Exception as e:
_logger.error(f"provided group is invalid. {e}")
raise e
else:
group_size = next(iter(scans)).group_size
if group_size is None:
_logger.warning("No information found regarding group size")
return True
elif group_size == len(scans):
return True
elif group_size < len(scans):
_logger.warning("more scans found than group_size")
return True
else:
return False
@deprecated(replacement="series_is_complete_from_group_size", since_version="2.1")
def serie_is_complete_from_group_size(
scans: list[TomoScanBase] | tuple[TomoScanBase, ...] | numpy.ndarray,
) -> bool:
return series_is_complete_from_group_size(scans=scans)
|