1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
# Copyright 2014-2015, Tresys Technology, LLC
#
# SPDX-License-Identifier: LGPL-2.1-only
#
import enum
import itertools
import logging
from collections.abc import Iterable, Mapping
from contextlib import suppress
from dataclasses import dataclass, InitVar
import typing
import warnings
try:
import networkx as nx
from networkx.exception import NetworkXError, NetworkXNoPath, NodeNotFound
except ImportError as iex:
logging.getLogger(__name__).debug(f"{iex.name} failed to import.")
from . import exception
from .descriptors import CriteriaDescriptor, EdgeAttrIntMax, EdgeAttrList
from .mixins import NetworkXGraphEdge
from .permmap import PermissionMap
from .policyrep import AVRule, SELinuxPolicy, TERuletype, Type
from .query import DirectedGraphAnalysis
__all__ = ['InfoFlowAnalysis', 'InfoFlowStep', 'InfoFlowPath']
InfoFlowPath = Iterable['InfoFlowStep']
class InfoFlowAnalysis(DirectedGraphAnalysis):
"""
Information flow analysis.
Parameters:
policy The policy to analyze.
perm_map The permission map or path to the permission map file.
Keyword Parameters
source The source type of the analysis.
target The target type of the analysis.
mode The analysis mode (see InfoFlowAnalysisMode)
min_weight The minimum permission weight to include in the analysis.
(default is 1)
exclude The types excluded from the information flow analysis.
(default is none)
booleans If None, all rules will be added to the analysis (default).
otherwise it should be set to a dict with keys corresponding
to boolean names and values of True/False. Any unspecified
booleans will use the policy's default values.
"""
class Mode(enum.Enum):
"""Information flow analysis modes"""
ShortestPaths = "All shortest paths"
AllPaths = "All paths up to" # N steps
FlowsOut = "Flows out of the source type."
FlowsIn = "Flows into the target type."
DIRECT_MODES: typing.Final[tuple[Mode, ...]] = (Mode.FlowsIn, Mode.FlowsOut)
TRANSITIVE_MODES: typing.Final[tuple[Mode, ...]] = (Mode.ShortestPaths, Mode.AllPaths)
source = CriteriaDescriptor(lookup_function="lookup_type")
target = CriteriaDescriptor(lookup_function="lookup_type")
mode = Mode.ShortestPaths
booleans: Mapping[str, bool] | None
def __init__(self, policy: SELinuxPolicy, perm_map: PermissionMap, /, *,
min_weight: int = 1,
source: Type | str | None = None,
target: Type | str | None = None,
mode: Mode = Mode.ShortestPaths,
depth_limit: int | None = 1,
exclude: Iterable[Type | str] | None = None,
booleans: Mapping[str, bool] | None = None) -> None:
super().__init__(policy, perm_map=perm_map, min_weight=min_weight, source=source,
target=target, mode=mode, depth_limit=depth_limit,
exclude=exclude, booleans=booleans)
self._min_weight: int
self._perm_map: PermissionMap
self._depth_limit: int | None
self.rebuildgraph = True
self.rebuildsubgraph = True
try:
self.G = nx.DiGraph()
self.subG = self.G.copy()
except NameError:
self.log.critical("NetworkX is not available. This is "
"requried for Information Flow Analysis.")
self.log.critical("This is typically in the python3-networkx package.")
raise
@property
def depth_limit(self) -> int | None:
return self._depth_limit
@depth_limit.setter
def depth_limit(self, value: int | None) -> None:
if value is not None and value < 1:
raise ValueError("Information flow max depth must be positive.")
self._depth_limit = value
# no subgraph rebuild needed.
@property
def min_weight(self) -> int:
return self._min_weight
@min_weight.setter
def min_weight(self, weight: int) -> None:
if not 1 <= weight <= 10:
raise ValueError(
"Min information flow weight must be an integer 1-10.")
self._min_weight = weight
self.rebuildsubgraph = True
@property
def perm_map(self) -> PermissionMap:
return self._perm_map
@perm_map.setter
def perm_map(self, perm_map: PermissionMap) -> None:
self._perm_map = perm_map
self.rebuildgraph = True
self.rebuildsubgraph = True
@property
def exclude(self) -> list[Type]:
return self._exclude
@exclude.setter
def exclude(self, types: Iterable[Type | str] | None) -> None:
if types:
self._exclude: list[Type] = [self.policy.lookup_type(t) for t in types]
else:
self._exclude = []
self.rebuildsubgraph = True
def results(self) -> Iterable[InfoFlowPath] | Iterable["InfoFlowStep"]:
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(f"Generating information flow results from {self.policy}")
self.log.debug(f"{self.source=}")
self.log.debug(f"{self.target=}")
self.log.debug(f"{self.mode=}, {self.depth_limit=}")
with suppress(NetworkXNoPath, NodeNotFound, NetworkXError):
match self.mode:
case InfoFlowAnalysis.Mode.ShortestPaths:
if not all((self.source, self.target)):
raise ValueError("Source and target types must be specified.")
self.log.info("Generating all shortest information flow paths from "
f"{self.source} to {self.target}...")
for path in nx.all_shortest_paths(self.subG, self.source, self.target):
yield (InfoFlowStep(self.subG, source, target)
for source, target in nx.utils.misc.pairwise(path))
case InfoFlowAnalysis.Mode.AllPaths:
if not all((self.source, self.target)):
raise ValueError("Source and target types must be specified.")
self.log.info("Generating all information flow paths from "
f"{self.source} to {self.target}, "
f"max length {self.depth_limit}...")
for path in nx.all_simple_paths(self.subG, self.source, self.target,
cutoff=self.depth_limit):
yield (InfoFlowStep(self.subG, source, target)
for source, target in nx.utils.misc.pairwise(path))
case InfoFlowAnalysis.Mode.FlowsOut:
if not self.source:
raise ValueError("Source type must be specified.")
self.log.info(f"Generating all information flows out of {self.source}, "
f"max depth {self.depth_limit}")
for source, target in nx.bfs_edges(self.subG, self.source,
depth_limit=self.depth_limit):
yield InfoFlowStep(self.subG, source, target)
case InfoFlowAnalysis.Mode.FlowsIn:
if not self.target:
raise ValueError("Target type must be specified.")
self.log.info(f"Generating all information flows into {self.target} ",
f"max depth {self.depth_limit}")
# swap source and target since bfs_edges is reversed.
for target, source in nx.bfs_edges(self.subG, self.target, reverse=True,
depth_limit=self.depth_limit):
yield InfoFlowStep(self.subG, source, target)
case _:
raise ValueError(f"Unknown analysis mode: {self.mode}")
def graphical_results(self) -> "nx.DiGraph":
"""
Return the results of the analysis as a NetworkX directed graph.
Caller has the responsibility of converting the graph to a
visualization.
For example, to convert to a pygraphviz graph:
pgv = nx.nx_agraph.to_agraph(g.graphical_results())
pgv.layout(prog="dot")
"""
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(f"Generating graphical information flow results from {self.policy}")
self.log.debug(f"{self.source=}")
self.log.debug(f"{self.target=}")
self.log.debug(f"{self.mode=}, {self.depth_limit=}")
try:
match self.mode:
case InfoFlowAnalysis.Mode.ShortestPaths:
if not all((self.source, self.target)):
raise ValueError("Source and target types must be specified.")
self.log.info("Generating all shortest information flow paths from "
f"{self.source} to {self.target}...")
paths = nx.all_shortest_paths(self.subG, self.source, self.target)
edges = [pair for path in paths for pair in nx.utils.misc.pairwise(path)]
out = nx.DiGraph()
out.add_edges_from(edges)
return out
case InfoFlowAnalysis.Mode.AllPaths:
if not all((self.source, self.target)):
raise ValueError("Source and target types must be specified.")
self.log.info("Generating all information flow paths from "
f"{self.source} to {self.target}, "
f"max length {self.depth_limit}...")
paths = nx.all_simple_paths(self.subG, self.source, self.target,
cutoff=self.depth_limit)
edges = [pair for path in paths for pair in nx.utils.misc.pairwise(path)]
out = nx.DiGraph()
out.add_edges_from(edges)
return out
case InfoFlowAnalysis.Mode.FlowsOut:
if not self.source:
raise ValueError("Source type must be specified.")
self.log.info(f"Generating all information flows out of {self.source}, "
f"max depth {self.depth_limit}")
return nx.bfs_tree(self.subG, self.source, depth_limit=self.depth_limit)
case InfoFlowAnalysis.Mode.FlowsIn:
if not self.target:
raise ValueError("Target type must be specified.")
self.log.info(f"Generating all information flows into {self.target} ",
f"max depth {self.depth_limit}")
out = nx.bfs_tree(self.subG, self.target, reverse=True,
depth_limit=self.depth_limit)
# output is reversed, un-reverse it
return nx.reverse(out, copy=False)
case _:
raise ValueError(f"Unknown analysis mode: {self.mode}")
except Exception as ex:
raise exception.AnalysisException(
f"Unable to generate graphical results: {ex}") from ex
def shortest_path(self, source: Type | str, target: Type | str) -> InfoFlowPath:
"""
Generator which yields one shortest path between the source
and target types (there may be more).
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
warnings.warn("InfoFlowAnalysis.shortest_path() is deprecated. "
"It will be removed in SETools 4.6.")
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(f"Generating one shortest information flow path from {s} to {t}...")
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
# pylint: disable=unexpected-keyword-arg, no-value-for-parameter
yield from self._generate_steps(nx.shortest_path(self.subG, source=s, target=t))
def all_paths(self, source: Type | str, target: Type | str, maxlen: int = 2) \
-> Iterable[InfoFlowPath]:
"""
Generator which yields all paths between the source and target
up to the specified maximum path length. This algorithm
tends to get very expensive above 3-5 steps, depending
on the policy complexity.
Parameters:
source The source type.
target The target type.
maxlen Maximum length of paths.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
warnings.warn("InfoFlowAnalysis.all_paths() is deprecated, replaced with the results() "
"method. It will be removed in SETools 4.6.")
if maxlen < 1:
raise ValueError("Maximum path length must be positive.")
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(
f"Generating all information flow paths from {s} to {t}, max length {maxlen}...")
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
for path in nx.all_simple_paths(self.subG, s, t, maxlen):
yield self._generate_steps(path)
def all_shortest_paths(self, source: Type | str, target: Type | str) -> Iterable[InfoFlowPath]:
"""
Generator which yields all shortest paths between the source
and target types.
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
warnings.warn("InfoFlowAnalysis.all_shorted_paths() is deprecated, replaced with the "
"results() method. It will be removed in SETools 4.6.")
s = self.policy.lookup_type(source)
t = self.policy.lookup_type(target)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(f"Generating all shortest information flow paths from {s} to {t}...")
with suppress(NetworkXNoPath, NodeNotFound):
# NodeNotFound: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
# NetworkXNoPath: no paths or the target type is
# not in the graph
for path in nx.all_shortest_paths(self.subG, s, t):
yield self._generate_steps(path)
def infoflows(self, type_: Type | str, out: bool = True) -> Iterable['InfoFlowStep']:
"""
Generator which yields all information flows in/out of a
specified source type.
Parameters:
source The starting type.
Keyword Parameters:
out If true, information flows out of the type will
be returned. If false, information flows in to the
type will be returned. Default is true.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
information flow.
"""
warnings.warn("InfoFlowAnalysis.infoflows() is deprecated, replaced with the results() "
"method. It will be removed in SETools 4.6.")
s = self.policy.lookup_type(type_)
if self.rebuildsubgraph:
self._build_subgraph()
self.log.info(f"Generating all information flows {'out of' if out else 'into'} {s}")
with suppress(NetworkXError):
# NetworkXError: the type is valid but not in graph, e.g.
# excluded or disconnected due to min weight
if out:
flows = self.subG.out_edges(s)
else:
flows = self.subG.in_edges(s)
for source, target in flows:
yield InfoFlowStep(self.subG, source, target)
def get_stats(self) -> str: # pragma: no cover
"""
Get the information flow graph statistics.
Return: str
"""
if self.rebuildgraph:
self._build_graph()
return f"{nx.number_of_nodes(self.G)=}\n" \
f"{nx.number_of_edges(self.G)=}\n" \
f"{len(self.G)=}\n"
#
# Internal functions follow
#
def _generate_steps(self, path: list[Type]) -> InfoFlowPath:
"""
Generator which returns the source, target, and associated rules
for each information flow step.
Parameter:
path A list of graph node names representing an information flow path.
Yield: tuple(source, target, rules)
source The source type for this step of the information flow.
target The target type for this step of the information flow.
rules The list of rules creating this information flow step.
"""
for source, target in nx.utils.misc.pairwise(path):
yield InfoFlowStep(self.subG, source, target)
#
#
# Graph building functions
#
#
# 1. _build_graph determines the flow in each direction for each TE
# rule and then expands the rule. All information flows are
# included in this main graph: memory is traded off for efficiency
# as the main graph should only need to be rebuilt if permission
# weights change.
# 2. _build_subgraph derives a subgraph which removes all excluded
# types (nodes) and edges (information flows) which are below the
# minimum weight. This subgraph is rebuilt only if the main graph
# is rebuilt or the minimum weight or excluded types change.
def _build_graph(self) -> None:
self.G.clear()
self.G.name = f"Information flow graph for {self.policy}."
self.perm_map.map_policy(self.policy)
self.log.info(f"Building information flow graph from {self.policy}...")
self.log.debug(f"{self.perm_map=}")
for rule in self.policy.terules():
if rule.ruletype != TERuletype.allow:
continue
weight = self.perm_map.rule_weight(typing.cast(AVRule, rule))
for s, t in itertools.product(rule.source.expand(), rule.target.expand()):
# only add flows if they actually flow
# in or out of the source type type
if s != t:
if weight.write:
edge = InfoFlowStep(self.G, s, t, create=True)
edge.rules.append(rule)
edge.weight = weight.write
if weight.read:
edge = InfoFlowStep(self.G, t, s, create=True)
edge.rules.append(rule)
edge.weight = weight.read
self.rebuildgraph = False
self.rebuildsubgraph = True
self.log.info("Completed building information flow graph.")
self.log.debug(f"Graph stats: nodes: {nx.number_of_nodes(self.G)}, "
f"edges: {nx.number_of_edges(self.G)}.")
def _build_subgraph(self) -> None:
if self.rebuildgraph:
self._build_graph()
self.log.info("Building information flow subgraph...")
self.log.debug(f"{self.min_weight=}")
self.log.debug(f"{self.exclude=}")
self.log.debug(f"{self.booleans=}")
# delete excluded types from subgraph
nodes = [n for n in self.G.nodes() if n not in self.exclude]
self.subG = self.G.subgraph(nodes).copy()
# delete edges below minimum weight.
# no need if weight is 1, since that
# does not exclude any edges.
if self.min_weight > 1:
delete_list = []
for s, t in self.subG.edges():
edge = InfoFlowStep(self.subG, s, t)
if edge.weight < self.min_weight:
delete_list.append(edge)
self.subG.remove_edges_from(delete_list)
if self.booleans is not None:
delete_list = []
for s, t in self.subG.edges():
edge = InfoFlowStep(self.subG, s, t)
# collect disabled rules
rule_list = []
# pylint: disable=not-an-iterable
for rule in edge.rules:
if not rule.enabled(**self.booleans):
rule_list.append(rule)
deleted_rules: list[AVRule] = []
for rule in rule_list:
if rule not in deleted_rules:
edge.rules.remove(rule)
deleted_rules.append(rule)
if not edge.rules:
delete_list.append(edge)
self.subG.remove_edges_from(delete_list)
self.rebuildsubgraph = False
self.log.info("Completed building information flow subgraph.")
self.log.debug(f"Subgraph stats: nodes: {nx.number_of_nodes(self.subG)}, "
f"edges: {nx.number_of_edges(self.subG)}.")
@dataclass
class InfoFlowStep(NetworkXGraphEdge):
"""
A graph edge. Also used for returning information flow steps.
Parameters:
graph The NetworkX graph.
source The source type of the edge.
target The target type of the edge.
Keyword Parameters:
create (T/F) create the edge if it does not exist.
The default is False.
"""
G: "nx.DiGraph"
source: Type
target: Type
create: InitVar[bool] = False
rules = EdgeAttrList()
# use capacity to store the info flow weight so
# we can use network flow algorithms naturally.
# The weight for each edge is 1 since each info
# flow step is no more costly than another
# (see below add_edge() call)
weight = EdgeAttrIntMax('capacity')
def __post_init__(self, create) -> None:
if not self.G.has_edge(self.source, self.target):
if create:
self.G.add_edge(self.source, self.target, weight=1)
self.rules = None
self.weight = None
else:
raise ValueError("InfoFlowStep does not exist in graph")
def __format__(self, spec: str) -> str:
if spec == "full":
rules = "\n".join(f" {r}" for r in sorted(self.rules))
return f"{self.source} -> {self.target}\n{rules}"
elif not spec:
return f"{self.source} -> {self.target}"
else:
return super().__format__(spec)
def __str__(self):
return self.__format__("full")
|