1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/*
* File: seerCommon.cpp
*
* Functions common to seer and kmds
* Program options parsing
*
*/
#include "seercommon.hpp"
// Parse command line parameters into usable program parameters
cmdOptions verifyCommandLine(boost::program_options::variables_map& vm, const std::vector<Sample>& samples)
{
cmdOptions verified;
verified.max_length = vm["max_length"].as<long int>();
if(vm.count("kmers"))
{
verified.kmers = vm["kmers"].as<std::string>();
}
if(vm.count("output"))
{
verified.output = vm["output"].as<std::string>();
}
if(vm.count("chisq"))
{
verified.chi_cutoff = stod(vm["chisq"].as<std::string>());
}
if (vm.count("pval"))
{
verified.log_cutoff = stod(vm["pval"].as<std::string>());
}
// Verify MDS options in a separate function
// This is pc, size and number of threads
verifyMDSOptions(verified, vm);
verified.filter = 1;
if (vm.count("no_filtering"))
{
verified.filter = 0;
}
else
{
// Error check filtering options
verified.min_words = 0;
if (vm.count("min_words"))
{
int min_words_in = vm["min_words"].as<int>();
if (min_words_in >= 0)
{
verified.min_words = min_words_in;
}
else
{
badCommand("min_words", std::to_string(min_words_in));
}
}
else
{
double maf_in = vm["maf"].as<double>();
if (maf_in >= 0)
{
verified.min_words = static_cast<unsigned int>(samples.size() * maf_in);
}
else
{
badCommand("maf", std::to_string(maf_in));
}
}
if (verified.min_words > samples.size())
{
badCommand("min_words/maf", std::to_string(verified.min_words));
}
verified.max_words = samples.size() - verified.min_words;
}
verified.print_samples = 0;
if (vm.count("print_samples"))
{
verified.print_samples = 1;
}
return verified;
}
// Check these options in a separate function, which is also usable by kmds
// in mds_concat mode
void verifyMDSOptions(cmdOptions& verified, boost::program_options::variables_map& vm)
{
// Number of threads is also needed by both
if (vm.count("threads") && vm["threads"].as<int>() > 0)
{
verified.num_threads = vm["threads"].as<int>();
}
else
{
verified.num_threads = 1;
}
if (vm.count("pc"))
{
if (vm["pc"].as<int>() > 0)
{
verified.pc = vm["pc"].as<int>();
}
else
{
badCommand("pc", std::to_string(vm["pc"].as<int>()));
}
}
if (vm.count("size"))
{
if (vm["size"].as<long int>() > 0)
{
verified.size = vm["size"].as<long int>();
}
else
{
badCommand("size", std::to_string(vm["size"].as<long int>()));
}
}
if (vm.count("write_distances"))
{
verified.write_distances = 1;
}
else
{
verified.write_distances = 0;
}
}
// Check for continuous phenotype. If even one sample has neither 0 or 1 as
// phenotype
int continuousPhenotype (const std::vector<Sample>& sample_list)
{
int cont_pheno = 0;
for (std::vector<Sample>::const_iterator it = sample_list.begin(); it != sample_list.end(); ++it)
{
if (it->continuous())
{
cont_pheno = 1;
break;
}
}
// Write inferred output to terminal
if (cont_pheno)
{
std::cerr << "Detected continuous phenotype\n";
}
else
{
std::cerr << "Detected binary phenotype\n";
}
return cont_pheno;
}
// Conversion functions required as code is a mix of dlib and armadillo
// matrices
// This could obviously be improved...
arma::vec dlib_to_arma(const column_vector& dlib_vec)
{
arma::vec converted(dlib_vec.nr());
for (unsigned int i = 0; i < dlib_vec.nr(); ++i)
{
converted(i) = dlib_vec(i);
}
return converted;
}
column_vector arma_to_dlib(const arma::vec& arma_vec)
{
column_vector converted;
converted.set_size(arma_vec.n_elem);
for (unsigned int i = 0; i < arma_vec.n_elem; ++i)
{
converted(i) = arma_vec(i);
}
return converted;
}
// Converts a stl vector of strings to an arma mat of doubles
arma::mat vecToMat(const std::vector<std::string>& in_col)
{
arma::mat out_mat(in_col.size(), 1);
for (unsigned int i = 0; i < in_col.size(); ++i)
{
out_mat(i, 0) = std::stof(in_col[i]);
}
return out_mat;
}
// Normalises a matrix's columns: subtract mean, divide by std dev
void normaliseMatCols(arma::mat& matrix_in)
{
arma::mat means = arma::mean(matrix_in);
arma::mat stddevs = arma::stddev(matrix_in);
matrix_in.each_row() -= means;
matrix_in.each_row() /= stddevs;
}
// Inverts a symmetric positive matrix, checking for errors
// Not passed by ref, creates a copy. Right thing to do?
arma::mat inv_covar(arma::mat A)
{
// Try the default. Internally this uses Cholesky decomposition and back
// solves. For large condition numbers it fails.
arma::mat B;
if (!inv_sympd(B, A))
{
// If the Cholesky decomposition fails, try pseudo-inverse
// This uses SVD:
// A = U*S*V.t() => A^-1 = V*S^-1*U.t()
// and ignores small values in the S matrix
if (!arma::pinv(B, A))
{
std::cerr << "A matrix inversion failed!" << std::endl;
}
}
return B;
}
|