1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
.. raw:: html
<style type="text/css">
.thumbnail {{
position: relative;
float: left;
margin: 10px;
width: 180px;
height: 200px;
}}
.thumbnail img {{
position: absolute;
display: inline;
left: 0;
width: 170px;
height: 170px;
}}
</style>
seaborn: statistical data visualization
=======================================
.. raw:: html
<div style="clear: both"></div>
<div class="container-fluid hidden-xs hidden-sm">
<div class="row">
<a href="examples/scatterplot_matrix.html">
<div class="col-md-2 thumbnail">
<img src="_static/scatterplot_matrix_thumb.png">
</div>
</a>
<a href="examples/errorband_lineplots.html">
<div class="col-md-2 thumbnail">
<img src="_static/errorband_lineplots_thumb.png">
</div>
</a>
<a href="examples/scatterplot_sizes.html">
<div class="col-md-2 thumbnail">
<img src="_static/scatterplot_sizes_thumb.png">
</div>
</a>
<a href="examples/timeseries_facets.html">
<div class="col-md-2 thumbnail">
<img src="_static/timeseries_facets_thumb.png">
</div>
</a>
<a href="examples/horizontal_boxplot.html">
<div class="col-md-2 thumbnail">
<img src="_static/horizontal_boxplot_thumb.png">
</div>
</a>
<a href="examples/regression_marginals.html">
<div class="col-md-2 thumbnail">
<img src="_static/regression_marginals_thumb.png">
</div>
</a>
</div>
</div>
<br>
<div class="container-fluid">
<div class="row">
<div class="col-md-6">
Seaborn is a Python data visualization library based on `matplotlib
<https://matplotlib.org>`_. It provides a high-level interface for drawing
attractive and informative statistical graphics.
For a brief introduction to the ideas behind the library, you can read the
:doc:`introductory notes <introduction>`. Visit the :doc:`installation page
<installing>` to see how you can download the package and get started with it.
You can browse the :doc:`example gallery <examples/index>` to see what you
can do with seaborn, and then check out the :doc:`tutorial <tutorial>` and
:doc:`API reference <api>` to find out how.
To see the code or report a bug, please visit the `GitHub repository
<https://github.com/mwaskom/seaborn>`_. General support questions are most at home
on `stackoverflow <https://stackoverflow.com/questions/tagged/seaborn/>`_ or
`discourse <https://discourse.matplotlib.org/c/3rdparty/seaborn/21>`_, which
have dedicated channels for seaborn.
.. raw:: html
</div>
<div class="col-md-3">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Contents</h3>
</div>
<div class="panel-body">
.. toctree::
:maxdepth: 1
Introduction <introduction>
Release notes <whatsnew>
Installing <installing>
Example gallery <examples/index>
Tutorial <tutorial>
API reference <api>
.. toctree::
:hidden:
Citing <citing>
Archive <archive>
.. raw:: html
</div>
</div>
</div>
<div class="col-md-3">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Features</h3>
</div>
<div class="panel-body">
* Relational: :ref:`API <relational_api>` | :doc:`Tutorial <tutorial/relational>`
* Distribution: :ref:`API <distribution_api>` | :doc:`Tutorial <tutorial/distributions>`
* Categorical: :ref:`API <categorical_api>` | :doc:`Tutorial <tutorial/categorical>`
* Regression: :ref:`API <regression_api>` | :doc:`Tutorial <tutorial/regression>`
* Multiples: :ref:`API <grid_api>` | :doc:`Tutorial <tutorial/axis_grids>`
* Style: :ref:`API <style_api>` | :doc:`Tutorial <tutorial/aesthetics>`
* Color: :ref:`API <palette_api>` | :doc:`Tutorial <tutorial/color_palettes>`
.. raw:: html
</div>
</div>
</div>
</div>
</div>
|