1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/*
* seccure - Copyright 2006 B. Poettering
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307 USA
*/
/*
* SECCURE Elliptic Curve Crypto Utility for Reliable Encryption
*
* http://point-at-infinity.org/seccure/
*
*
* seccure implements a selection of asymmetric algorithms based on
* elliptic curve cryptography (ECC). See the manpage or the project's
* homepage for further details.
*
* This code links against the GNU gcrypt library "libgcrypt" (which is
* part of the GnuPG project). The code compiles successfully with
* libgcrypt 1.2.2. Use the included Makefile to build the binary.
*
* Compile with -D NOMEMLOCK if your machine doesn't support memory
* locking.
*
* Report bugs to: seccure AT point-at-infinity.org
*
*/
#include <gcrypt.h>
#include <assert.h>
#include "ecc.h"
#include "numtheory.h"
/******************************************************************************/
/* Chapter 3.1.2 in the "Guide to Elliptic Curve Cryptography" */
struct affine_point point_new(void)
{
struct affine_point r;
r.x = gcry_mpi_new(0);
r.y = gcry_mpi_new(0);
return r;
}
void point_release(struct affine_point *p)
{
gcry_mpi_release(p->x);
gcry_mpi_release(p->y);
}
void point_set(struct affine_point *p1, const struct affine_point *p2)
{
gcry_mpi_set(p1->x, p2->x);
gcry_mpi_set(p1->y, p2->y);
}
void point_load_zero(struct affine_point *p)
{
gcry_mpi_set_ui(p->x, 0);
gcry_mpi_set_ui(p->y, 0);
}
int point_is_zero(const struct affine_point *p)
{
return ! gcry_mpi_cmp_ui(p->x, 0) && ! gcry_mpi_cmp_ui(p->y, 0);
}
int point_on_curve(const struct affine_point *p, const struct domain_params *dp)
{
int res;
if (! (res = point_is_zero(p))) {
gcry_mpi_t h1, h2;
h1 = gcry_mpi_new(0);
h2 = gcry_mpi_new(0);
gcry_mpi_mulm(h1, p->x, p->x, dp->m);
gcry_mpi_mulm(h1, h1, p->x, dp->m);
gcry_mpi_mulm(h2, dp->a, p->x, dp->m);
gcry_mpi_addm(h1, h2, h1, dp->m);
gcry_mpi_addm(h1, h1, dp->b, dp->m);
gcry_mpi_mulm(h2, p->y, p->y, dp->m);
res = ! gcry_mpi_cmp(h1, h2);
gcry_mpi_release(h1);
gcry_mpi_release(h2);
}
return res;
}
int point_compress(const struct affine_point *p)
{
return gcry_mpi_test_bit(p->y, 0);
}
int point_decompress(struct affine_point *p, const gcry_mpi_t x, int yflag,
const struct domain_params *dp)
{
gcry_mpi_t h1, h2;
int res;
h1 = gcry_mpi_new(0);
h2 = gcry_mpi_new(0);
gcry_mpi_mulm(h1, x, x, dp->m);
gcry_mpi_mulm(h1, h1, x, dp->m);
gcry_mpi_mulm(h2, dp->a, x, dp->m);
gcry_mpi_addm(h1, h1, h2, dp->m);
gcry_mpi_addm(h1, h1, dp->b, dp->m);
if ((res = mod_root(h2, h1, dp->m)))
if ((res = (gcry_mpi_cmp_ui(h2, 0) || ! yflag))) {
if (yflag != gcry_mpi_test_bit(h2, 0))
gcry_mpi_sub(h2, dp->m, h2);
p->x = gcry_mpi_copy(x);
p->y = gcry_mpi_copy(h2);
assert(point_on_curve(p, dp));
}
gcry_mpi_release(h1);
gcry_mpi_release(h2);
return res;
}
void point_double(struct affine_point *p, const struct domain_params *dp)
{
if (gcry_mpi_cmp_ui(p->y, 0)) {
gcry_mpi_t t1, t2;
t1 = gcry_mpi_new(0);
t2 = gcry_mpi_new(0);
gcry_mpi_mulm(t2, p->x, p->x, dp->m);
gcry_mpi_addm(t1, t2, t2, dp->m);
gcry_mpi_addm(t1, t1, t2, dp->m);
gcry_mpi_addm(t1, t1, dp->a, dp->m);
gcry_mpi_addm(t2, p->y, p->y, dp->m);
gcry_mpi_invm(t2, t2, dp->m);
gcry_mpi_mulm(t1, t1, t2, dp->m);
gcry_mpi_mulm(t2, t1, t1, dp->m);
gcry_mpi_subm(t2, t2, p->x, dp->m);
gcry_mpi_subm(t2, t2, p->x, dp->m);
gcry_mpi_subm(p->x, p->x, t2, dp->m);
gcry_mpi_mulm(t1, t1, p->x, dp->m);
gcry_mpi_subm(p->y, t1, p->y, dp->m);
gcry_mpi_set(p->x, t2);
gcry_mpi_release(t1);
gcry_mpi_release(t2);
}
else
gcry_mpi_set_ui(p->x, 0);
}
void point_add(struct affine_point *p1, const struct affine_point *p2,
const struct domain_params *dp)
{
if (! point_is_zero(p2)) {
if (! point_is_zero(p1)) {
if (! gcry_mpi_cmp(p1->x, p2->x)) {
if (! gcry_mpi_cmp(p1->y, p2->y))
point_double(p1, dp);
else
point_load_zero(p1);
}
else {
gcry_mpi_t t;
t = gcry_mpi_new(0);
gcry_mpi_subm(t, p1->y, p2->y, dp->m);
gcry_mpi_subm(p1->y, p1->x, p2->x, dp->m);
gcry_mpi_invm(p1->y, p1->y, dp->m);
gcry_mpi_mulm(p1->y, t, p1->y, dp->m);
gcry_mpi_mulm(t, p1->y, p1->y, dp->m);
gcry_mpi_addm(p1->x, p1->x, p2->x, dp->m);
gcry_mpi_subm(p1->x, t, p1->x, dp->m);
gcry_mpi_subm(t, p2->x, p1->x, dp->m);
gcry_mpi_mulm(p1->y, p1->y, t, dp->m);
gcry_mpi_subm(p1->y, p1->y, p2->y, dp->m);
gcry_mpi_release(t);
}
}
else
point_set(p1, p2);
}
}
/******************************************************************************/
/* Chapter 3.2.2 in the "Guide to Elliptic Curve Cryptography" */
struct jacobian_point jacobian_new(void)
{
struct jacobian_point r;
r.x = gcry_mpi_new(0);
r.y = gcry_mpi_new(0);
r.z = gcry_mpi_new(0);
return r;
}
void jacobian_release(struct jacobian_point *p)
{
gcry_mpi_release(p->x);
gcry_mpi_release(p->y);
gcry_mpi_release(p->z);
}
void jacobian_load_affine(struct jacobian_point *p1,
const struct affine_point *p2)
{
if (! point_is_zero(p2)) {
gcry_mpi_set(p1->x, p2->x);
gcry_mpi_set(p1->y, p2->y);
gcry_mpi_set_ui(p1->z, 1);
}
else
gcry_mpi_set_ui(p1->z, 0);
}
void jacobian_load_zero(struct jacobian_point *p)
{
gcry_mpi_set_ui(p->z, 0);
}
int jacobian_is_zero(const struct jacobian_point *p)
{
return ! gcry_mpi_cmp_ui(p->z, 0);
}
void jacobian_double(struct jacobian_point *p, const struct domain_params *dp)
{
if (gcry_mpi_cmp_ui(p->z, 0)) {
if (gcry_mpi_cmp_ui(p->y, 0)) {
gcry_mpi_t t1, t2;
t1 = gcry_mpi_new(0);
t2 = gcry_mpi_new(0);
gcry_mpi_mulm(t1, p->x, p->x, dp->m);
gcry_mpi_addm(t2, t1, t1, dp->m);
gcry_mpi_addm(t2, t2, t1, dp->m);
gcry_mpi_mulm(t1, p->z, p->z, dp->m);
gcry_mpi_mulm(t1, t1, t1, dp->m);
gcry_mpi_mulm(t1, t1, dp->a, dp->m);
gcry_mpi_addm(t1, t1, t2, dp->m);
gcry_mpi_mulm(p->z, p->z, p->y, dp->m);
gcry_mpi_addm(p->z, p->z, p->z, dp->m);
gcry_mpi_mulm(p->y, p->y, p->y, dp->m);
gcry_mpi_addm(p->y, p->y, p->y, dp->m);
gcry_mpi_mulm(t2, p->x, p->y, dp->m);
gcry_mpi_addm(t2, t2, t2, dp->m);
gcry_mpi_mulm(p->x, t1, t1, dp->m);
gcry_mpi_subm(p->x, p->x, t2, dp->m);
gcry_mpi_subm(p->x, p->x, t2, dp->m);
gcry_mpi_subm(t2, t2, p->x, dp->m);
gcry_mpi_mulm(t1, t1, t2, dp->m);
gcry_mpi_mulm(t2, p->y, p->y, dp->m);
gcry_mpi_addm(t2, t2, t2, dp->m);
gcry_mpi_subm(p->y, t1, t2, dp->m);
gcry_mpi_release(t1);
gcry_mpi_release(t2);
}
else
gcry_mpi_set_ui(p->z, 0);
}
}
void jacobian_affine_point_add(struct jacobian_point *p1,
const struct affine_point *p2,
const struct domain_params *dp)
{
if (! point_is_zero(p2)) {
if (gcry_mpi_cmp_ui(p1->z, 0)) {
gcry_mpi_t t1, t2, t3;
t1 = gcry_mpi_new(0);
t2 = gcry_mpi_new(0);
gcry_mpi_mulm(t1, p1->z, p1->z, dp->m);
gcry_mpi_mulm(t2, t1, p2->x, dp->m);
gcry_mpi_mulm(t1, t1, p1->z, dp->m);
gcry_mpi_mulm(t1, t1, p2->y, dp->m);
if (! gcry_mpi_cmp(p1->x, t2)) {
if (! gcry_mpi_cmp(p1->y, t1))
jacobian_double(p1, dp);
else
jacobian_load_zero(p1);
}
else {
t3 = gcry_mpi_new(0);
gcry_mpi_subm(p1->x, p1->x, t2, dp->m);
gcry_mpi_subm(p1->y, p1->y, t1, dp->m);
gcry_mpi_mulm(p1->z, p1->z, p1->x, dp->m);
gcry_mpi_mulm(t3, p1->x, p1->x, dp->m);
gcry_mpi_mulm(t2, t2, t3, dp->m);
gcry_mpi_mulm(t3, t3, p1->x, dp->m);
gcry_mpi_mulm(t1, t1, t3, dp->m);
gcry_mpi_mulm(p1->x, p1->y, p1->y, dp->m);
gcry_mpi_subm(p1->x, p1->x, t3, dp->m);
gcry_mpi_subm(p1->x, p1->x, t2, dp->m);
gcry_mpi_subm(p1->x, p1->x, t2, dp->m);
gcry_mpi_subm(t2, t2, p1->x, dp->m);
gcry_mpi_mulm(p1->y, p1->y, t2, dp->m);
gcry_mpi_subm(p1->y, p1->y, t1, dp->m);
gcry_mpi_release(t3);
}
gcry_mpi_release(t1);
gcry_mpi_release(t2);
}
else
jacobian_load_affine(p1, p2);
}
}
struct affine_point jacobian_to_affine(const struct jacobian_point *p,
const struct domain_params *dp)
{
struct affine_point r = point_new();
if (gcry_mpi_cmp_ui(p->z, 0)) {
gcry_mpi_t h;
h = gcry_mpi_new(0);
gcry_mpi_invm(h, p->z, dp->m);
gcry_mpi_mulm(r.y, h, h, dp->m);
gcry_mpi_mulm(r.x, p->x, r.y, dp->m);
gcry_mpi_mulm(r.y, r.y, h, dp->m);
gcry_mpi_mulm(r.y, r.y, p->y, dp->m);
gcry_mpi_release(h);
}
return r;
}
/******************************************************************************/
/* Algorithm 3.27 in the "Guide to Elliptic Curve Cryptography" */
#if 0
struct affine_point pointmul(const struct affine_point *p,
const gcry_mpi_t exp,
const struct domain_params *dp)
{
struct affine_point r = point_new();
int n = gcry_mpi_get_nbits(exp);
while (n) {
point_double(&r, dp);
if (gcry_mpi_test_bit(exp, --n))
point_add(&r, p, dp);
}
assert(point_on_curve(&r, dp));
return r;
}
#else
struct affine_point pointmul(const struct affine_point *p,
const gcry_mpi_t exp,
const struct domain_params *dp)
{
struct jacobian_point r = jacobian_new();
struct affine_point R;
int n = gcry_mpi_get_nbits(exp);
while (n) {
jacobian_double(&r, dp);
if (gcry_mpi_test_bit(exp, --n))
jacobian_affine_point_add(&r, p, dp);
}
R = jacobian_to_affine(&r, dp);
jacobian_release(&r);
assert(point_on_curve(&R, dp));
return R;
}
#endif
/******************************************************************************/
/* Algorithm 4.26 in the "Guide to Elliptic Curve Cryptography" */
int embedded_key_validation(const struct affine_point *p,
const struct domain_params *dp)
{
if (gcry_mpi_cmp_ui(p->x, 0) < 0 || gcry_mpi_cmp(p->x, dp->m) >= 0 ||
gcry_mpi_cmp_ui(p->y, 0) < 0 || gcry_mpi_cmp(p->y, dp->m) >= 0)
return 0;
return ! point_is_zero(p) && point_on_curve(p, dp);
}
/* Algorithm 4.25 in the "Guide to Elliptic Curve Cryptography" */
int full_key_validation(const struct affine_point *p,
const struct domain_params *dp)
{
if (! embedded_key_validation(p, dp))
return 0;
if (dp->cofactor != 1) {
struct affine_point bp;
int res;
bp = pointmul(p, dp->order, dp);
res = point_is_zero(&bp);
point_release(&bp);
return res;
}
else
return 1;
}
|