1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
|
(*---------------------------------------------------------------------------
Copyright (c) 2009 Daniel C. Bünzli. All rights reserved.
Distributed under a BSD3 license, see license at the end of the file.
react release 1.2.0
---------------------------------------------------------------------------*)
let err_max_rank = "maximal rank exceeded"
let err_sig_undef = "signal value undefined yet"
let err_fix = "trying to fix a delayed value"
let err_retain_never = "E.never cannot retain a closure"
let err_retain_cst_sig = "constant signals cannot retain a closure"
let err_step_executed = "step already executed"
let err_event_scheduled = "event already scheduled on a step"
let err_signal_scheduled = "signal already scheduled on a step"
module Wa = struct
type 'a t = { mutable arr : 'a Weak.t; mutable len : int }
(* The type for resizeable weak arrays.
For now the arrays only grow. We could try to compact and
downsize the array in scan_add if a threshold of empty slots is
exceeded. *)
let create size = { arr = Weak.create size; len = 0 }
let length a = a.len
let is_empty a =
try
for i = 0 to a.len - 1 do
if Weak.check a.arr i then raise Exit;
done;
true
with Exit -> false
let clear a = a.arr <- Weak.create 0; a.len <- 0
let get a i = Weak.get a.arr i
let set a i = Weak.set a.arr i
let swap a i i' =
let v = Weak.get a.arr i' in
Weak.blit a.arr i a.arr i' 1; (* blit prevents i from becoming live. *)
Weak.set a.arr i v
let grow a =
let arr' = Weak.create (2 * (a.len + 1)) in
Weak.blit a.arr 0 arr' 0 a.len;
a.arr <- arr'
let add a v = (* adds v at the end of a. *)
if a.len = Weak.length a.arr then grow a;
Weak.set a.arr a.len (Some v);
a.len <- a.len + 1
let scan_add a v = (* adds v to a, tries to find an empty slot, O(a.len). *)
try
for i = 0 to a.len - 1 do
match Weak.get a.arr i with
| None -> Weak.set a.arr i (Some v); raise Exit | Some _ -> ()
done;
add a v
with Exit -> ()
let rem_last a = let l = a.len - 1 in (a.len <- l; Weak.set a.arr l None)
let rem a v = (* removes v from a, uses physical equality, O(a.len). *)
try
for i = 0 to a.len - 1 do
match Weak.get a.arr i with
| Some v' when v == v' -> Weak.set a.arr i None; raise Exit
| _ -> ()
done
with Exit -> ()
let iter f a =
for i = 0 to a.len - 1 do
match Weak.get a.arr i with Some v -> f v | None -> ()
done
let fold f acc a =
let acc = ref acc in
for i = 0 to a.len - 1 do
match Weak.get a.arr i with Some v -> acc := f !acc v | None -> ()
done;
!acc
end
type node =
{ mutable rank : int; (* its rank (height) in the dataflow graph. *)
mutable stamp : step; (* last step in which it was scheduled. *)
mutable retain : unit -> unit; (* retained by the node, NEVER invoked. *)
mutable producers : unit -> node list; (* nodes on which it depends. *)
mutable update : step -> unit; (* update closure. *)
deps : node Wa.t } (* weak references to dependent nodes. *)
(* The type for nodes.
Each event and (non-constant) signal has an associated node. The
fields producers and update keep, in their closure environment,
references to mutables (see later) on which the node depends.
Defining their contents via a let rec allows the environment to be
shared by the two closures.
There are special nodes to represent infinitesimally delayed nodes
(needed for recursive definitions). These nodes all have a rank of
Node.delayed_rank and depend only on the node they delay. Since
they have the highest rank possible they are updated only at the
end of the step and treated specially at that point (see
Step.execute). *)
and step =
{ mutable over : bool; (* true when the step is over. *)
mutable heap : heap; (* min-heap of nodes sorted by rank. *)
mutable eops : (unit -> unit) list; (* end of step operations. *)
mutable cops : (unit -> unit) list } (* cleanup step operations. *)
(* The type for update steps.
Note for historical reasons we use the variable names [c] and [c']
in the code for representing update steps.
There are four successive phases in the execution of a step c (see
Step.execute).
1. Nodes are updated in topological order until c.heap is empty or
we reach a delayed node.
2. End of step operations are executed. This may add new
dependencies (see S.diff and S.changes) and clear the occurence
of delayed events from a previous step (but used in this
step).
3. If there are delayed nodes in c.heap, we create a new step
c'. Each delayed node is updated and its dependents are put in
c'.heap. For delayed events, an end of step operation is added
in c' to clear the occurence at step 2 of c'. Delayed nodes are
updated in any order as a delayed node updating in a step
cannot depend on a delayed node updating in the same step.
4. Cleanup operations are executed. This clears the event occurences of
non-delayed event that occured in c.
After this, if a step c' was created in 3. the step gets executed. *)
and heap = node Wa.t
(* The type for heaps.
Weak min-heaps of nodes sorted according to their rank. Classic
imperative implementation with a twist to accomodate the fact
that nodes may disappear.
The heap property we maintain is that for any node its descendents
(vs. children) are either of no smaller rank or they are None. None
nodes need to be treated specially in percolate up and down. The
reason is that it blocks information about the rank of their
descendents. In percolate down the solution is to systematically
swap with None children. So do we in percolate up, however, in
that case we may violate the property if we swap with a None node
and stop right after (either because we got the root or we found a
parent of smaller rank), the property can however be reestablished
by percolating down from that point. *)
type 'a emut =
{ ev : 'a option ref; (* during steps, holds a potential occurence. *)
enode : node; } (* associated node. *)
type 'a event = Never | Emut of 'a emut
(* The type for events.
An event is either the never occuring event Never or a mutable
Emut. A mutable m has some value in m.v iff a step is being
executed and m has an occurence in the step. m's dependents are
scheduled for update iff m has a value in m.v.
Mutables that occur in a step are set back to None when the step
terminates with an cleanup step operation (see eupdate and
Step.execute). To avoid a weak reference on m in the cleanup
operation, the field m.v is a field on a reference instead of a
mutable field.
A new node n can be made dependent on a an event mutable m during a
step. But when n is added to m's dependents, m may already have
updated and scheduled its dependents. In that case n also need to
be scheduled (see E.add_dep). If m only occurs later in the step,
the n will be scheduled as usual with the others. *)
type 'a smut =
{ mutable sv : 'a option; (* signal value (None only temporary). *)
eq : 'a -> 'a -> bool; (* to detect signal value changes. *)
snode : node } (* associated node. *)
type 'a signal = Const of 'a | Smut of 'a smut
(* The type for signals.
A signal is either a constant signal Const or a mutable Smut. A
mutable m has a value in m.v iff m.v initialized. m's dependents
are scheduled for update iff m is initialized and m.v changed
according to m.eq in the step.
Signal initialization occurs as follows. If we have an init. value
we set the signal's value to this value and then :
1. If the creation occurs outside a step, the signal's update
function is invoked with Step.nil. This may overwrite the
init. value, but no dependent will see this change as there
cannot be any at that time.
2. If the creation occurs inside a step, the signal is scheduled
for update. Here again this may overwrite the init. value. If
the new value is equal to the init. value this will not schedule
the signals' dependents. However this is not a problem since
dependents are either new signals and will be scheduled via the
init. process or a new dependency added by S.switch in which
case this dependent is also be scheduled.
Note that in both cases if we had no init. value, the call to the
update function must unconditionaly write a concrete value for the
signal.
To find out whether the creation occurs in a step we walk back the
signal's producers recursively looking for a node stamp with an
unfinished step (see Step.find_unfinished). This is not in favor
of static signal creation but this is the price we have to pay for
not having global data structures.
A new node n can be made dependent on a signal mutable m during a
step. In contrast to events (see above) nothing special has to be
done. Here's the rationale :
1. If n is the node of a new event then either the event cannot
happen in the same step and thus the depency addition occurs at
the end of the step (S.diff, S.changes) or the event cares only
about having an up to date value if some other event occurs
(S.sample, E.on) in the same step and the rank of n ensures
this.
2. If n is the node of a new signal then n cares only about having
m's up to date values whenever n will initialize and the rank of
n ensures this. *)
module H = struct
let size = Wa.length
let els h = Wa.fold (fun acc e -> e :: acc) [] h (* no particular order. *)
let compare_down h i i' = match Wa.get h i, Wa.get h i' with
| Some n, Some n' -> compare n.rank n'.rank
| Some _, None -> 1 (* None is smaller than anything. *)
| None, Some _ -> -1 (* None is smaller than anything. *)
| None, None -> 0
let rec down h i =
let last = size h - 1 in
let start = 2 * i in
let l = start + 1 in (* left child index. *)
let r = start + 2 in (* right child index. *)
if l > last then () (* no child, stop *) else
let child = (* index of smallest child. *)
if r > last then l else (if compare_down h l r < 0 then l else r)
in
if compare_down h i child > 0 then (Wa.swap h i child; down h child)
let up h i =
let rec aux h i last_none =
if i = 0 then (if last_none then down h 0) else
let p = (i - 1) / 2 in (* parent index. *)
match Wa.get h i, Wa.get h p with
| Some n, Some n' ->
if compare n.rank n'.rank < 0 then (Wa.swap h i p; aux h p false) else
(if last_none then down h i)
| Some _, None ->
Wa.swap h i p; aux h p true
| None, _ -> ()
in
aux h i false
let rebuild h = for i = (size h - 2) / 2 downto 0 do down h i done
let add h n = Wa.add h n; up h (size h - 1)
let rec take h =
let s = size h in
if s = 0 then None else
let v = Wa.get h 0 in
begin
if s > 1
then (Wa.set h 0 (Wa.get h (s - 1)); Wa.rem_last h; down h 0)
else Wa.rem_last h
end;
match v with None -> take h | v -> v
end
let delayed_rank = max_int
module Step = struct (* Update steps. *)
type t = step
let nil = { over = true; heap = Wa.create 0; eops = []; cops = []}
let create () =
let h = Wa.create 11 in
{ over = false; heap = h; eops = []; cops = []}
let add c n = if n.stamp == c then () else (n.stamp <- c; H.add c.heap n)
let add_deps c n = Wa.iter (add c) n.deps
let add_eop c op = c.eops <- op :: c.eops
let add_cop c op = c.cops <- op :: c.cops
let allow_reschedule n = n.stamp <- nil
let rebuild c = H.rebuild c.heap
let rec execute c =
let eops c = List.iter (fun op -> op ()) c.eops; c.eops <- [] in
let cops c = List.iter (fun op -> op ()) c.cops; c.cops <- [] in
let finish c = c.over <- true; c.heap <- Wa.create 0 in
let rec update c = match H.take c.heap with
| Some n when n.rank <> delayed_rank -> n.update c; update c
| Some n ->
let c' = create () in
eops c; List.iter (fun n -> n.update c') (n :: H.els c.heap); cops c;
finish c;
execute c'
| None -> eops c; cops c; finish c
in
update c
let execute c = if c.over then invalid_arg err_step_executed else execute c
let find_unfinished nl = (* find unfinished step in recursive producers. *)
let rec aux next = function (* zig-zag breadth-first search. *)
| [] -> if next = [] then nil else aux [] next
| [] :: todo -> aux next todo
| nl :: todo -> find next todo nl
and find next todo = function
| [] -> aux next todo
| n :: nl ->
if not n.stamp.over then n.stamp else
find (n.producers () :: next) todo nl
in
aux [] [ nl ]
end
module Node = struct
let delayed_rank = delayed_rank
let min_rank = min_int
let max_rank = delayed_rank - 1
let nop _ = ()
let no_producers () = []
let create r =
{ rank = r; stamp = Step.nil; update = nop; retain = nop;
producers = no_producers; deps = Wa.create 0 }
let rem_dep n n' = Wa.rem n.deps n'
let add_dep n n' = Wa.scan_add n.deps n'
let has_dep n = not (Wa.is_empty n.deps)
let deps n = Wa.fold (fun acc d -> d :: acc) [] n.deps
let bind n p u = n.producers <- p; n.update <- u
let stop ?(strong = false) n =
if not strong then begin
n.producers <- no_producers; n.update <- nop; Wa.clear n.deps;
end else begin
let rec loop next to_rem = function
| [] ->
begin match next with
| (to_rem, prods) :: next -> loop next to_rem prods
| [] -> ()
end
| n :: todo ->
rem_dep n to_rem; (* N.B. rem_dep could be combined with has_dep *)
if n.rank = min_rank (* is a primitive *) || has_dep n
then loop next to_rem todo else
begin
let prods = n.producers () in
n.producers <- no_producers; n.update <- nop; Wa.clear n.deps;
loop ((n, prods) :: next) to_rem todo
end
in
let producers = n.producers () in
n.producers <- no_producers; n.update <- nop; Wa.clear n.deps;
loop [] n producers
end
let set_rank n r = n.rank <- r
let rmin = create min_rank
let rmax n n' = if n.rank > n'.rank then n else n'
let rsucc n =
if n.rank = delayed_rank then min_rank else
if n.rank < max_rank then n.rank + 1 else invalid_arg err_max_rank
let rsucc2 n n' =
let r = rsucc n in
let r' = rsucc n' in
if r > r' then r else r'
(* Rank updates currently only increases ranks. If this is problematic
udpate ranks orthodoxly by taking the succ of the max of n.producers.
Note that rank update stops at delayed nodes (otherwise we would
loop and blow the ranks). *)
let update_rank n r = (* returns true iff n's rank increased. *)
let rec aux = function
| [] -> ()
| n :: todo ->
let update todo d =
if n.rank < d.rank || n.rank = delayed_rank then todo else
(d.rank <- rsucc n; d :: todo)
in
aux (Wa.fold update todo n.deps)
in
if r > n.rank then (n.rank <- r; aux [ n ]; true) else false
end
(* Shortcuts *)
let rsucc = Node.rsucc
let rsucc2 = Node.rsucc2
let rmax = Node.rmax
(* Event value, creation and update *)
let eval m = match !(m.ev) with Some v -> v | None -> assert false
let emut rank = { ev = ref None; enode = Node.create rank }
let event m p u = Node.bind m.enode p u; Emut m
let eupdate v m c =
let clear v () = v := None in
m.ev := Some v;
Step.add_cop c (clear m.ev);
Step.add_deps c m.enode
(* Signal value, creation and update *)
let sval m = match m.sv with Some v -> v | None -> assert false
let smut rank eq = { sv = None; eq = eq; snode = Node.create rank }
let signal ?i m p u =
Node.bind m.snode p u;
begin match i with Some _ as v -> m.sv <- v | None -> () end;
begin match Step.find_unfinished (m.snode.producers ()) with
| c when c == Step.nil -> m.snode.update Step.nil
| c -> Step.add c m.snode
end;
Smut m
let supdate v m c = match m.sv with
| Some v' when (m.eq v v') -> ()
| Some _ -> m.sv <- Some v; if c != Step.nil then Step.add_deps c m.snode
| None -> m.sv <- Some v (* init. without init value. *)
module E = struct
type 'a t = 'a event
let add_dep m n =
Node.add_dep m.enode n;
if !(m.ev) <> None then Step.add m.enode.stamp n
let send m ?step v = match step with (* sends an event occurence. *)
| Some c ->
if c.over then invalid_arg err_step_executed else
if not m.enode.stamp.over then invalid_arg err_event_scheduled else
m.enode.stamp <- c;
eupdate v m c
| None ->
let c = Step.create () in
m.enode.stamp <- c;
eupdate v m c;
Step.execute c
(* Basics *)
let never = Never
let create () =
let m = emut Node.min_rank in
Emut m, send m
let retain e c = match e with
| Never -> invalid_arg err_retain_never
| Emut m -> let c' = m.enode.retain in (m.enode.retain <- c); (`R c')
let stop ?strong = function Never -> () | Emut m -> Node.stop ?strong m.enode
let equal e e' = match e, e' with
| Never, Never -> true
| Never, _ | _, Never -> false
| Emut m, Emut m' -> m == m'
let trace ?(iff = Const true) t e = match iff with
| Const false -> e
| Const true ->
begin match e with
| Never -> e
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = let v = eval m in t v; eupdate v m' c in
add_dep m m'.enode;
event m' p u
end
| Smut mc ->
match e with
| Never -> Never
| Emut m ->
let m' = emut (rsucc2 mc.snode m.enode) in
let rec p () = [mc.snode; m.enode]
and u c = match !(m.ev) with
| None -> () (* mc updated. *)
| Some v -> if (sval mc) then t v; eupdate v m' c
in
Node.add_dep mc.snode m'.enode;
add_dep m m'.enode;
event m' p u
(* Transforming and filtering *)
let
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c =
Node.rem_dep m.enode m'.enode;
eupdate (eval m) m' c;
Node.stop m'.enode
in
add_dep m m'.enode;
event m' p u
let drop_once = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = (* first update. *)
let u' c = eupdate (eval m) m' c in (* subsequent updates. *)
Node.bind m'.enode p u'
in
add_dep m m'.enode;
event m' p u
let app ef = function
| Never -> Never
| Emut m ->
match ef with
| Never -> Never
| Emut mf ->
let m' = emut (rsucc2 m.enode mf.enode) in
let rec p () = [ m.enode; mf.enode ]
and u c = match !(mf.ev), !(m.ev) with
| None, _ | _, None -> ()
| Some f, Some v -> eupdate (f v) m' c
in
add_dep m m'.enode;
add_dep mf m'.enode;
event m' p u
let map f = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = eupdate (f (eval m)) m' c in
add_dep m m'.enode;
event m' p u
let stamp e v = match e with
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = eupdate v m' c in
add_dep m m'.enode;
event m' p u
let filter pred = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = let v = eval m in if pred v then eupdate v m' c else () in
add_dep m m'.enode;
event m' p u
let fmap fm = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let rec p () = [ m.enode ]
and u c = match fm (eval m) with Some v -> eupdate v m' c | None -> ()
in
add_dep m m'.enode;
event m' p u
let diff d = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let last = ref None in
let rec p () = [ m.enode ]
and u c =
let v = eval m in
match !last with
| None -> last := Some v
| Some v' -> last := Some v; eupdate (d v v') m' c
in
add_dep m m'.enode;
event m' p u
let changes ?(eq = ( = )) = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let last = ref None in
let rec p () = [ m.enode ]
and u c =
let v = eval m in
match !last with
| None -> last := Some v; eupdate v m' c
| Some v' -> last := Some v; if eq v v' then () else eupdate v m' c
in
add_dep m m'.enode;
event m' p u
let on c = function
| Never -> Never
| Emut m as e ->
match c with
| Const true -> e
| Const false -> Never
| Smut mc ->
let m' = emut (rsucc2 m.enode mc.snode) in
let rec p () = [ m.enode; mc.snode ]
and u c = match !(m.ev) with
| None -> () (* mc updated. *)
| Some _ -> if (sval mc) then eupdate (eval m) m' c else ()
in
add_dep m m'.enode;
Node.add_dep mc.snode m'.enode;
event m' p u
let when_ = on
let dismiss c = function
| Never -> Never
| Emut m as e ->
match c with
| Never -> e
| Emut mc ->
let m' = emut (rsucc2 mc.enode m.enode) in
let rec p () = [ mc.enode; m.enode ]
and u c = match !(mc.ev) with
| Some _ -> ()
| None -> eupdate (eval m) m' c
in
add_dep mc m'.enode;
add_dep m m'.enode;
event m' p u
let until c = function
| Never -> Never
| Emut m as e ->
match c with
| Never -> e
| Emut mc ->
let m' = emut (rsucc2 m.enode mc.enode) in
let rec p () = [ m.enode; mc.enode] in
let u c = match !(mc.ev) with
| None -> eupdate (eval m) m' c
| Some _ ->
Node.rem_dep m.enode m'.enode;
Node.rem_dep mc.enode m'.enode;
Node.stop m'.enode
in
add_dep m m'.enode;
add_dep mc m'.enode;
event m' p u
(* Accumulating *)
let accum ef i = match ef with
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let acc = ref i in
let rec p () = [ m.enode ]
and u c = acc := (eval m) !acc; eupdate !acc m' c in
add_dep m m'.enode;
event m' p u
let fold f i = function
| Never -> Never
| Emut m ->
let m' = emut (rsucc m.enode) in
let acc = ref i in
let rec p () = [ m.enode ]
and u c = acc := f !acc (eval m); eupdate !acc m' c in
add_dep m m'.enode;
event m' p u
(* Combining *)
let occurs m = !(m.ev) <> None
let find_muts_and_next_rank el =
let rec aux acc max = function
| [] -> List.rev acc, rsucc max
| (Emut m) :: l -> aux (m :: acc) (rmax max m.enode) l
| Never :: l -> aux acc max l
in
aux [] Node.rmin el
let select el =
let emuts, r = find_muts_and_next_rank el in
let m' = emut r in
let rec p () = List.rev_map (fun m -> m.enode) emuts
and u c = try eupdate (eval (List.find occurs emuts)) m' c with
| Not_found -> assert false
in
List.iter (fun m -> add_dep m m'.enode) emuts;
event m' p u
let merge f a el =
let rec fold f acc = function
| m :: l when occurs m -> fold f (f acc (eval m)) l
| m :: l -> fold f acc l
| [] -> acc
in
let emuts, r = find_muts_and_next_rank el in
let m' = emut r in
let rec p () = List.rev_map (fun m -> m.enode) emuts
and u c = eupdate (fold f a emuts) m' c in
List.iter (fun m -> add_dep m m'.enode) emuts;
event m' p u
let switch e = function
| Never -> e
| Emut ms ->
let r = match e with
| Emut m -> rsucc2 m.enode ms.enode | Never -> rsucc ms.enode
in
let m' = emut r in
let src = ref e in (* current event source. *)
let rec p () = match !src with
| Emut m -> [ m.enode; ms.enode ] | Never -> [ ms.enode ]
and u c = match !(ms.ev) with
| None -> (match !src with (* only src occurs. *)
| Emut m -> eupdate (eval m) m' c | Never -> assert false)
| Some e ->
begin match !src with
| Emut m -> Node.rem_dep m.enode m'.enode | Never -> ()
end;
src := e;
match e with
| Never -> ignore (Node.update_rank m'.enode (rsucc ms.enode))
| Emut m ->
Node.add_dep m.enode m'.enode;
if Node.update_rank m'.enode (rsucc2 m.enode ms.enode) then
begin
(* Rank increased because of m. Thus m may stil
update and we may be rescheduled. If it happens
we'll be in the other branch without any harm
but some redundant computation. *)
Step.allow_reschedule m'.enode;
Step.rebuild c;
end
else
(* No rank increase, m already updated if needed. *)
(match !(m.ev) with Some v -> eupdate v m' c | None -> ())
in
(match e with Emut m -> add_dep m m'.enode | Never -> ());
add_dep ms m'.enode;
event m' p u
let fix f =
let m = emut Node.delayed_rank in
let e = event m (fun () -> []) (fun _ -> assert false) in
match f e with
| Never, r -> r
| Emut m', r ->
if m'.enode.rank = Node.delayed_rank then invalid_arg err_fix;
let rec p () = [ (* avoid cyclic dep. *) ]
and u c = (* N.B. c is the next step. *)
let clear v () = v := None in
m.ev := Some (eval m');
Step.add_eop c (clear m.ev); (* vs. add_cop for regular events. *)
Step.add_deps c m.enode
in
Node.bind m.enode p u;
add_dep m' m.enode;
r
(* Lifting *)
let l1 = map
let l2 f e0 e1 = match e0, e1 with
| Never, _ -> Never
| _, Never -> Never
| Emut m0, Emut m1 ->
let r = rsucc2 m0.enode m1.enode in
let m' = emut r in
let rec p () = [ m0.enode; m1.enode ] in
let u c = match !(m0.ev), !(m1.ev) with
| None, _
| _, None -> ()
| Some v0, Some v1 -> eupdate (f v0 v1) m' c
in
add_dep m0 m'.enode;
add_dep m1 m'.enode;
event m' p u
let l3 f e0 e1 e2 = match e0, e1, e2 with
| Never, _, _ -> Never
| _, Never, _ -> Never
| _, _, Never -> Never
| Emut m0, Emut m1, Emut m2 ->
let r = rsucc (rmax (rmax m0.enode m1.enode) m2.enode) in
let m' = emut r in
let rec p () = [ m0.enode; m1.enode; m2.enode ] in
let u c = match !(m0.ev), !(m1.ev), !(m2.ev) with
| None, _, _
| _, None, _
| _, _, None -> ()
| Some v0, Some v1, Some v2 -> eupdate (f v0 v1 v2) m' c
in
add_dep m0 m'.enode;
add_dep m1 m'.enode;
add_dep m2 m'.enode;
event m' p u
let l4 f e0 e1 e2 e3 = match e0, e1, e2, e3 with
| Never, _, _, _ -> Never
| _, Never, _, _ -> Never
| _, _, Never, _ -> Never
| _, _, _, Never -> Never
| Emut m0, Emut m1, Emut m2, Emut m3 ->
let r = rsucc (rmax (rmax m0.enode m1.enode) (rmax m2.enode m3.enode)) in
let m' = emut r in
let rec p () = [ m0.enode; m1.enode; m2.enode; m3.enode ] in
let u c = match !(m0.ev), !(m1.ev), !(m2.ev), !(m3.ev) with
| None, _, _, _
| _, None, _, _
| _, _, None, _
| _, _, _, None -> ()
| Some v0, Some v1, Some v2, Some v3 -> eupdate (f v0 v1 v2 v3) m' c
in
add_dep m0 m'.enode;
add_dep m1 m'.enode;
add_dep m2 m'.enode;
add_dep m3 m'.enode;
event m' p u
let l5 f e0 e1 e2 e3 e4 = match e0, e1, e2, e3, e4 with
| Never, _, _, _, _ -> Never
| _, Never, _, _, _ -> Never
| _, _, Never, _, _ -> Never
| _, _, _, Never, _ -> Never
| _, _, _, _, Never -> Never
| Emut m0, Emut m1, Emut m2, Emut m3, Emut m4 ->
let r =
rsucc (rmax (rmax (rmax m0.enode m1.enode) (rmax m2.enode m3.enode))
m4.enode)
in
let m' = emut r in
let rec p () = [ m0.enode; m1.enode; m2.enode; m3.enode; m4.enode ] in
let u c = match !(m0.ev), !(m1.ev), !(m2.ev), !(m3.ev), !(m4.ev) with
| None, _, _, _, _
| _, None, _, _, _
| _, _, None, _, _
| _, _, _, None, _
| _, _, _, _, None -> ()
| Some v0, Some v1, Some v2, Some v3, Some v4 ->
eupdate (f v0 v1 v2 v3 v4) m' c
in
add_dep m0 m'.enode;
add_dep m1 m'.enode;
add_dep m2 m'.enode;
add_dep m3 m'.enode;
add_dep m4 m'.enode;
event m' p u
let l6 f e0 e1 e2 e3 e4 e5 = match e0, e1, e2, e3, e4, e5 with
| Never, _, _, _, _, _ -> Never
| _, Never, _, _, _, _ -> Never
| _, _, Never, _, _, _ -> Never
| _, _, _, Never, _, _ -> Never
| _, _, _, _, Never, _ -> Never
| _, _, _, _, _, Never -> Never
| Emut m0, Emut m1, Emut m2, Emut m3, Emut m4, Emut m5 ->
let r =
rsucc (rmax (rmax (rmax m0.enode m1.enode) (rmax m2.enode m3.enode))
(rmax m4.enode m5.enode))
in
let m' = emut r in
let rec p () = [ m0.enode; m1.enode; m2.enode; m3.enode; m4.enode;
m5.enode; ] in
let u c = match !(m0.ev), !(m1.ev), !(m2.ev), !(m3.ev), !(m4.ev),
!(m5.ev) with
| None, _, _, _, _, _
| _, None, _, _, _, _
| _, _, None, _, _, _
| _, _, _, None, _, _
| _, _, _, _, None, _
| _, _, _, _, _, None -> ()
| Some v0, Some v1, Some v2, Some v3, Some v4, Some v5 ->
eupdate (f v0 v1 v2 v3 v4 v5) m' c
in
add_dep m0 m'.enode;
add_dep m1 m'.enode;
add_dep m2 m'.enode;
add_dep m3 m'.enode;
add_dep m4 m'.enode;
add_dep m5 m'.enode;
event m' p u
(* Pervasives support *)
module Option = struct
let some e = map (fun v -> Some v) e
let value ?default e = match default with
| None -> fmap (fun v -> v) e
| Some (Const dv) -> map (function None -> dv | Some v -> v) e
| Some (Smut ms) ->
match e with
| Never -> Never
| Emut m ->
let m' = emut (rsucc2 m.enode ms.snode) in
let rec p () = [ m.enode; ms.snode ]
and u c = match !(m.ev) with
| None -> () (* ms updated. *)
| Some None -> eupdate (sval ms) m' c
| Some Some v -> eupdate v m' c
in
add_dep m m'.enode;
Node.add_dep ms.snode m'.enode;
event m' p u
end
end
module S = struct
type 'a t = 'a signal
let set_sval v m c = m.sv <- Some v; Step.add_deps c m.snode
let set m ?step v = (* starts an update step. *)
if m.eq (sval m) v then () else
match step with
| Some c ->
if c.over then invalid_arg err_step_executed else
if not m.snode.stamp.over then invalid_arg err_signal_scheduled else
m.snode.stamp <- c;
m.sv <- Some v;
Step.add_deps c m.snode
| None ->
let c = Step.create () in
m.snode.stamp <- c;
m.sv <- Some v;
Step.add_deps c m.snode;
Step.execute c
let end_of_step_add_dep ?(post_add_op = fun () -> ()) ~stop_if_stopped m m' =
(* In some combinators, when the semantics of event m' is such
that it should not occur in the (potential) step it is created,
we add the dependency [m'] to signal [m] only via an end of
step operation to avoid being scheduled in the step. *)
match Step.find_unfinished (m.snode.producers ()) with
| c when c == Step.nil ->
Node.add_dep m.snode m'.enode;
post_add_op ();
| c ->
let add_dep () =
if m.snode.update == Node.nop then
(* m stopped in step *)
(if stop_if_stopped then Node.stop m'.enode)
else
begin
ignore (Node.update_rank m'.enode (rsucc m.snode));
Node.add_dep m.snode m'.enode;
post_add_op ();
end
in
Step.add_eop c add_dep
(* Basics *)
let const v = Const v
let create ?(eq = ( = )) v =
let m = smut Node.min_rank eq in
m.sv <- Some v;
Smut m, set m
let retain s c = match s with
| Const _ -> invalid_arg err_retain_cst_sig
| Smut m -> let c' = m.snode.retain in m.snode.retain <- c; (`R c')
let eq_fun = function Const _ -> None | Smut m -> Some m.eq
let value = function
| Const v | Smut { sv = Some v } -> v
| Smut { sv = None } -> failwith err_sig_undef
let stop ?strong =
function Const _ -> () | Smut m -> Node.stop ?strong m.snode
let equal ?(eq = ( = )) s s' = match s, s' with
| Const v, Const v' -> eq v v'
| Const _, _ | _, Const _ -> false
| Smut m, Smut m' -> m == m'
let trace ?(iff = const true) t s = match iff with
| Const false -> s
| Const true ->
begin match s with
| Const v -> t v; s
| Smut m ->
let m' = smut (rsucc m.snode) m.eq in
let rec p () = [ m.snode ] in
let u c = let v = sval m in t v; supdate v m' c in
Node.add_dep m.snode m'.snode;
signal m' p u
end
| Smut mc ->
match s with
| Const v ->
let m' = smut (rsucc mc.snode) ( = ) (* we don't care about eq *) in
let rec p () = [ mc.snode ]
and u c =
if (sval mc) then t v;
Node.rem_dep mc.snode m'.snode;
Node.stop m'.snode;
in
Node.add_dep mc.snode m'.snode;
signal ~i:v m' p u
| Smut m ->
let m' = smut (rsucc2 mc.snode m.snode) m.eq in
let rec p () = [ mc.snode; m.snode ]
and u c =
let v = sval m in
match m'.sv with
| Some v' when m'.eq v v' -> () (* mc updated. *)
| _ -> if (sval mc) then t v; supdate v m' c (* init or diff. *)
in
Node.add_dep mc.snode m'.snode;
Node.add_dep m.snode m'.snode;
signal m' p u
(* From events *)
let hold ?(eq = ( = )) i = function
| Never -> Const i
| Emut m ->
let m' = smut (rsucc m.enode) eq in
let rec p () = [ m.enode ]
and u c = match !(m.ev) with
| None -> () (* init. only. *)
| Some v -> supdate v m' c
in
E.add_dep m m'.snode;
signal ~i m' p u
(* Filtering and transforming *)
let map ?(eq = ( = )) f = function
| Const v -> Const (f v)
| Smut m ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = supdate (f (sval m)) m' c in
Node.add_dep m.snode m'.snode;
signal m' p u
let app ?(eq = ( = )) sf sv = match sf, sv with
| Smut mf, Smut mv ->
let m' = smut (rsucc2 mf.snode mv.snode) eq in
let rec p () = [ mf.snode; mv.snode ]
and u c = supdate ((sval mf) (sval mv)) m' c in
Node.add_dep mf.snode m'.snode;
Node.add_dep mv.snode m'.snode;
signal m' p u
| Const f, Const v -> Const (f v)
| Const f, sv -> map ~eq f sv
| Smut mf, Const v ->
let m' = smut (rsucc mf.snode) eq in
let rec p () = [ mf.snode ]
and u c = supdate ((sval mf) v) m' c in
Node.add_dep mf.snode m'.snode;
signal m' p u
let filter ?(eq = ( = )) pred i = function
| Const v as s -> if pred v then s else Const i
| Smut m ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = let v = sval m in if pred v then supdate v m' c else () in
Node.add_dep m.snode m'.snode;
signal ~i m' p u
let fmap ?(eq = ( = )) fm i = function
| Const v -> (match fm v with Some v' -> Const v' | None -> Const i)
| Smut m ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = match fm (sval m) with Some v -> supdate v m' c | None -> ()
in
Node.add_dep m.snode m'.snode;
signal ~i m' p u
let diff d = function
| Const _ -> Never
| Smut m ->
let m' = emut (rsucc m.snode) in
let last = ref None in
let rec p () = [ m.snode ]
and u c =
let v = sval m in
match !last with
| Some v' -> last := Some v; eupdate (d v v') m' c
| None -> assert false
in
let post_add_op () = last := Some (sval m) in
end_of_step_add_dep ~post_add_op ~stop_if_stopped:true m m';
event m' p u
let changes = function
| Const _ -> Never
| Smut m ->
let m' = emut (rsucc m.snode) in
let rec p () = [ m.snode ]
and u c = eupdate (sval m) m' c in
end_of_step_add_dep ~stop_if_stopped:true m m';
event m' p u
let sample f e = function
| Const v -> E.map (fun ev -> f ev v) e
| Smut ms ->
match e with
| Never -> Never
| Emut me ->
let m' = emut (rsucc2 me.enode ms.snode) in
let rec p () = [ me.enode; ms.snode ]
and u c = match !(me.ev) with
| None -> () (* ms updated *)
| Some v -> eupdate (f v (sval ms)) m' c
in
E.add_dep me m'.enode;
Node.add_dep ms.snode m'.enode;
event m' p u
let on ?(eq = ( = )) c i s = match c with
| Const true -> s
| Const false -> Const i
| Smut mc ->
match s with
| Const v ->
let m' = smut (rsucc mc.snode) eq in
let rec p () = [ mc.snode ]
and u c = if (sval mc) then supdate v m' c else () in
Node.add_dep mc.snode m'.snode;
signal ~i m' p u
| Smut ms ->
let m' = smut (rsucc2 mc.snode ms.snode) eq in
let rec p () = [ mc.snode; ms.snode ]
and u c = if (sval mc) then supdate (sval ms) m' c else () in
Node.add_dep mc.snode m'.snode;
Node.add_dep ms.snode m'.snode;
signal ~i m' p u
let when_ = on
let dismiss ?(eq = ( = )) c i s = match c with
| Never -> s
| Emut mc ->
match s with
| Const v ->
let m' = smut (rsucc mc.enode) eq in
let rec p () = [ mc.enode ]
and u c = match !(mc.ev) with
| Some _ -> () | None -> supdate v m' c
in
Node.add_dep mc.enode m'.snode;
signal ~i m' p u
| Smut ms ->
let m' = smut (rsucc2 mc.enode ms.snode) eq in
let rec p () = [ mc.enode; ms.snode ]
and u c = match !(mc.ev) with
| Some _ -> () | None -> supdate (sval ms) m' c
in
Node.add_dep mc.enode m'.snode;
Node.add_dep ms.snode m'.snode;
signal ~i m' p u
(* Accumulating *)
let accum ?(eq = ( = )) ef i = match ef with
| Never -> Const i
| Emut m ->
let m' = smut (rsucc m.enode) eq in
let rec p () = [ m.enode ]
and u c = match !(m.ev) with
| None -> () (* init only. *)
| Some v -> supdate (v (sval m')) m' c
in
E.add_dep m m'.snode;
signal ~i m' p u
let fold ?(eq = ( = )) f i = function
| Never -> Const i
| Emut m ->
let m' = smut (rsucc m.enode) eq in
let rec p () = [ m.enode ]
and u c = match !(m.ev) with
| None -> () (* init only. *)
| Some v -> supdate (f (sval m') v) m' c in
E.add_dep m m'.snode;
signal ~i m' p u
(* Combining *)
let merge ?(eq = ( = )) f a sl =
let rmax' acc = function Const _ -> acc | Smut m -> rmax acc m.snode in
let nodes acc = function Const _ -> acc | Smut m -> m.snode :: acc in
let merger f a = function Const v -> f a v | Smut m -> f a (sval m) in
let m' = smut (rsucc (List.fold_left rmax' Node.rmin sl)) eq in
let rec p () = List.fold_left nodes [] sl
and u c = supdate (List.fold_left (merger f) a sl) m' c in
let dep = function Const _ -> ()| Smut m -> Node.add_dep m.snode m'.snode in
List.iter dep sl;
signal m' p u
let switch ?(eq = ( = )) = function
| Const s -> s
| Smut mss ->
let dummy = smut Node.min_rank eq in
let src = ref (Smut dummy) in (* dummy is overwritten by sig. init *)
let m' = smut (rsucc mss.snode) eq in
let rec p () = match !src with
| Smut m -> [ mss.snode; m.snode] | Const _ -> [ mss.snode ]
and u c =
if (sval mss) == !src then (* ss didn't change, !src did *)
begin match !src with
| Smut m -> supdate (sval m) m' c
| Const _ -> () (* init only. *)
end
else (* ss changed *)
begin
begin match !src with
| Smut m -> Node.rem_dep m.snode m'.snode
| Const _ -> ()
end;
let new_src = sval mss in
src := new_src;
match new_src with
| Const v ->
ignore (Node.update_rank m'.snode (rsucc mss.snode));
supdate v m' c
| Smut m ->
Node.add_dep m.snode m'.snode;
if c == Step.nil then
begin
ignore (Node.update_rank m'.snode
(rsucc2 m.snode mss.snode));
(* Check if the init src is in a step. *)
match Step.find_unfinished [m.snode] with
| c when c == Step.nil -> supdate (sval m) m' c
| c -> Step.add c m'.snode
end
else
if Node.update_rank m'.snode (rsucc2 m.snode mss.snode) then
begin
(* Rank increased because of m. Thus m may still
update and we need to reschedule. Next time we
will be in the other branch. *)
Step.allow_reschedule m'.snode;
Step.rebuild c;
Step.add c m'.snode
end
else
(* No rank increase. m already updated if needed, no need
to reschedule and rebuild the queue. *)
supdate (sval m) m' c
end
in
Node.add_dep mss.snode m'.snode;
(* We add a dep to dummy to avoid a long scan of Wa.rem when we remove
the dep in the [u] function during static init. *)
Node.add_dep dummy.snode m'.snode;
signal m' p u
let bind ?eq s sf = switch ?eq (map ~eq:( == ) sf s)
let fix ?(eq = ( = )) i f =
let update_delayed n p u nl =
Node.bind n p u;
match Step.find_unfinished nl with
| c when c == Step.nil ->
(* no pertinent occuring step, create a step for update. *)
let c = Step.create () in
n.update c;
Step.execute c
| c -> Step.add c n
in
let m = smut Node.delayed_rank eq in
let s = signal ~i m (fun () -> []) (fun _ -> ()) in
match f s with
| Const v, r ->
let rec p () = []
and u c = supdate v m c in
update_delayed m.snode p u (Node.deps m.snode);
r
| Smut m', r ->
if m'.snode.rank = Node.delayed_rank then invalid_arg err_fix;
let rec p () = [ (* avoid cyclic dep. *) ]
and u c = supdate (sval m') m c in (* N.B. c is the next step. *)
Node.add_dep m'.snode m.snode;
update_delayed m.snode p u (m'.snode :: Node.deps m.snode);
r
(* Lifting *)
let l1 = map
let l2 ?(eq = ( = )) f s s' = match s, s' with
| Smut m0, Smut m1 ->
let m' = smut (rsucc2 m0.snode m1.snode) eq in
let rec p () = [ m0.snode; m1.snode ]
and u c = supdate (f (sval m0) (sval m1)) m' c in
Node.add_dep m0.snode m'.snode;
Node.add_dep m1.snode m'.snode;
signal m' p u
| Const v, Const v' -> Const (f v v')
| Const v, Smut m ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = supdate (f v (sval m)) m' c in
Node.add_dep m.snode m'.snode;
signal m' p u
| Smut m, Const v ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = supdate (f (sval m) v) m' c in
Node.add_dep m.snode m'.snode;
signal m' p u
let l3 ?(eq = ( = )) f s0 s1 s2 = match s0, s1, s2 with
| Smut m0, Smut m1, Smut m2 ->
let r = rsucc (rmax (rmax m0.snode m1.snode) m2.snode) in
let m' = smut r eq in
let rec p () = [ m0.snode; m1.snode; m2.snode ]
and u c = supdate (f (sval m0) (sval m1) (sval m2)) m' c in
Node.add_dep m0.snode m'.snode;
Node.add_dep m1.snode m'.snode;
Node.add_dep m2.snode m'.snode;
signal m' p u
| Const v0, Const v1, Const v2 -> Const (f v0 v1 v2)
| s0, s1, s2 -> app ~eq (l2 ~eq:( == ) f s0 s1) s2
let l4 ?(eq = ( = )) f s0 s1 s2 s3 = match s0, s1, s2, s3 with
| Smut m0, Smut m1, Smut m2, Smut m3 ->
let r = rsucc (rmax (rmax m0.snode m1.snode) (rmax m2.snode m3.snode)) in
let m' = smut r eq in
let rec p () = [ m0.snode; m1.snode; m2.snode; m3.snode ]
and u c = supdate (f (sval m0) (sval m1) (sval m2) (sval m3)) m' c in
Node.add_dep m0.snode m'.snode;
Node.add_dep m1.snode m'.snode;
Node.add_dep m2.snode m'.snode;
Node.add_dep m3.snode m'.snode;
signal m' p u
| Const v0, Const v1, Const v2, Const v3 -> Const (f v0 v1 v2 v3)
| s0, s1, s2, s3 -> app ~eq (l3 ~eq:( == ) f s0 s1 s2) s3
let l5 ?(eq = ( = )) f s0 s1 s2 s3 s4 = match s0, s1, s2, s3, s4 with
| Smut m0, Smut m1, Smut m2, Smut m3, Smut m4 ->
let m = rmax in
let r = rsucc (m (m m0.snode m1.snode)
(m m2.snode (m m3.snode m4.snode)))
in
let m' = smut r eq in
let rec p () = [ m0.snode; m1.snode; m2.snode; m3.snode; m4.snode ]
and u c =
let v = f (sval m0) (sval m1) (sval m2) (sval m3) (sval m4) in
supdate v m' c
in
Node.add_dep m0.snode m'.snode;
Node.add_dep m1.snode m'.snode;
Node.add_dep m2.snode m'.snode;
Node.add_dep m3.snode m'.snode;
Node.add_dep m4.snode m'.snode;
signal m' p u
| Const v0, Const v1, Const v2, Const v3, Const v4 -> Const (f v0 v1 v2 v3 v4)
| s0, s1, s2, s3, s4 -> app ~eq (l4 ~eq:( == ) f s0 s1 s2 s3) s4
let l6 ?(eq = ( = )) f s0 s1 s2 s3 s4 s5 = match s0, s1, s2, s3, s4, s5 with
| Smut m0, Smut m1, Smut m2, Smut m3, Smut m4, Smut m5 ->
let m = rmax in
let m = m (m m0.snode (m m1.snode m2.snode))
(m m3.snode (m m4.snode m5.snode))
in
let m' = smut (rsucc m) eq in
let rec p () =
[ m0.snode; m1.snode; m2.snode; m3.snode; m4.snode; m5.snode ]
and u c =
let v = f (sval m0) (sval m1) (sval m2) (sval m3) (sval m4) (sval m5) in
supdate v m' c
in
Node.add_dep m0.snode m'.snode;
Node.add_dep m1.snode m'.snode;
Node.add_dep m2.snode m'.snode;
Node.add_dep m3.snode m'.snode;
Node.add_dep m4.snode m'.snode;
Node.add_dep m5.snode m'.snode;
signal m' p u
| Const v0, Const v1, Const v2, Const v3, Const v4, Const v5->
Const (f v0 v1 v2 v3 v4 v5)
| s0, s1, s2, s3, s4, s5 -> app ~eq (l5 ~eq:( == ) f s0 s1 s2 s3 s4) s5
module Bool = struct
let true
let zero = Const false
let eq : bool -> bool -> bool = ( = )
let not s = l1 ~eq not s
let ( && ) s s' = l2 ~eq ( && ) s s'
let ( || ) s s' = l2 ~eq ( || ) s s'
let edge s = changes s
let edge_detect edge = function
| Const _ -> Never
| Smut m ->
let m' = emut (rsucc m.snode) in
let rec p () = [ m.snode ]
and u c = if (sval m) = edge then eupdate () m' c in
end_of_step_add_dep ~stop_if_stopped:true m m';
event m' p u
let rise s = edge_detect true s
let fall s = edge_detect false s
let flip b = function
| Never -> Const b
| Emut m ->
let m' = smut (rsucc m.enode) ( = ) in
let rec p () = [ m.enode ]
and u c = supdate (Pervasives.not (sval m')) m' c in
E.add_dep m m'.snode;
(* can't use [signal] here because of semantics. *)
Node.bind m'.snode p u;
m'.sv <- Some b;
begin match Step.find_unfinished [m.enode] with
| c when c == Step.nil -> ()
| c -> Step.add c m'.snode
end;
Smut m'
end
module Int = struct
let zero = Const 0
let 1
let minus_one = Const (-1)
let eq : int -> int -> bool = ( = )
let ( ~- ) s = l1 ~eq ( ~- ) s
let succ s = l1 ~eq succ s
let pred s = l1 ~eq pred s
let ( + ) s s' = l2 ~eq ( + ) s s'
let ( - ) s s' = l2 ~eq ( - ) s s'
let ( * ) s s' = l2 ~eq ( * ) s s'
let ( mod ) s s' = l2 ~eq ( mod ) s s'
let abs s = l1 ~eq abs s
let max_int = const max_int
let min_int = const min_int
let ( land ) s s' = l2 ~eq ( land ) s s'
let ( lor ) s s' = l2 ~eq ( lor ) s s'
let ( lxor ) s s' = l2 ~eq ( lxor ) s s'
let lnot s = l1 ~eq lnot s
let ( lsl ) s s' = l2 ~eq ( lsl ) s s'
let ( lsr ) s s' = l2 ~eq ( lsr ) s s'
let ( asr ) s s' = l2 ~eq ( asr ) s s'
end
module Float = struct
let zero = Const 0.
let 1.
let minus_one = Const (-1.)
let eq : float -> float -> bool = ( = )
let ( ~-. ) s = l1 ~eq ( ~-. ) s
let ( +. ) s s' = l2 ~eq ( +. ) s s'
let ( -. ) s s' = l2 ~eq ( -. ) s s'
let ( *. ) s s' = l2 ~eq ( *. ) s s'
let ( /. ) s s' = l2 ~eq ( /. ) s s'
let ( ** ) s s' = l2 ~eq ( ** ) s s'
let sqrt s = l1 ~eq sqrt s
let exp s = l1 ~eq exp s
let log s = l1 ~eq log s
let log10 s = l1 ~eq log10 s
let cos s = l1 ~eq cos s
let sin s = l1 ~eq sin s
let tan s = l1 ~eq tan s
let acos s = l1 ~eq acos s
let asin s = l1 ~eq asin s
let atan s = l1 ~eq atan s
let atan2 s s' = l2 ~eq atan2 s s'
let cosh s = l1 ~eq cosh s
let sinh s = l1 ~eq sinh s
let tanh s = l1 ~eq tanh s
let ceil s = l1 ~eq ceil s
let floor s = l1 ~eq floor s
let abs_float s = l1 ~eq abs_float s
let mod_float s s' = l2 ~eq mod_float s s'
let frexp s = l1 ~eq:( = ) frexp s
let ldexp s s' = l2 ~eq ldexp s s'
let modf s = l1 ~eq:( = ) modf s
let float s = l1 ~eq float s
let float_of_int s = l1 ~eq float_of_int s
let truncate s = l1 ~eq:Int.eq truncate s
let int_of_float s = l1 ~eq:Int.eq int_of_float s
let infinity = const infinity
let neg_infinity = const neg_infinity
let nan = const nan
let max_float = const max_float
let min_float = const min_float
let epsilon_float = const epsilon_float
let classify_float s = l1 ~eq:( = ) classify_float s
end
module Pair = struct
let pair ?eq s s' = l2 ?eq (fun x y -> x, y) s s'
let fst ?eq s = l1 ?eq fst s
let snd ?eq s = l1 ?eq snd s
end
module Option = struct
let none = Const None
let some s =
let eq = match eq_fun s with
| None -> None
| Some eq ->
let eq v v' = match v, v' with
| Some v, Some v' -> eq v v'
| _ -> assert false
in
Some eq
in
map ?eq (fun v -> Some v) s
let value ?(eq = ( = )) ~default s = match s with
| Const (Some v) -> Const v
| Const None ->
let d = match default with `Init d -> d | `Always d -> d in
begin match d with
| Const d -> Const d
| Smut md ->
match Step.find_unfinished [md.snode] with
| c when c == Step.nil -> Const (sval md)
| c ->
let m' = smut (rsucc md.snode) eq in
let rec p () = [ md.snode ]
and u c =
Node.rem_dep md.snode m'.snode;
supdate (sval md) m' c;
Node.stop m'.snode
in
Node.add_dep md.snode m'.snode;
signal m' p u
end
| Smut m ->
match default with
| `Init (Const d) -> fmap ~eq (fun v -> v) d s
| `Always (Const d) -> map ~eq (function None -> d | Some v -> v) s
| `Init (Smut md) ->
begin match Step.find_unfinished [md.snode] with
| c when c == Step.nil ->
let m' = smut (rsucc m.snode) eq in
let rec p () = [ m.snode ]
and u c = match sval m with
| Some v -> supdate v m' c | None -> ()
in
Node.add_dep m.snode m'.snode;
signal ~i:(sval md) m' p u
| c ->
let m' = smut (rsucc2 m.snode md.snode) eq in
let rec p () = [ m.snode ] in (* subsequent updates *)
let u c = match sval m with
| Some v -> supdate v m' c | None -> ()
in
let rec p_first () = [ m.snode; md.snode ] in (* first update *)
let u_first c =
Node.rem_dep md.snode m'.snode;
begin match sval m with
| None -> supdate (sval md) m' c
| Some v -> supdate v m' c
end;
Node.bind m'.snode p u
in
Node.add_dep m.snode m'.snode;
Node.add_dep md.snode m'.snode;
signal m' p_first u_first
end
| `Always (Smut md) ->
let m' = smut (rsucc2 m.snode md.snode) eq in
let rec p () = [ m.snode; md.snode ] in
let u c = match sval m with
| Some v -> supdate v m' c
| None -> supdate (sval md) m' c
in
Node.add_dep m.snode m'.snode;
Node.add_dep md.snode m'.snode;
signal m' p u
end
module Compare = struct
let eq = Bool.eq
let ( = ) s s' = l2 ~eq ( = ) s s'
let ( <> ) s s' = l2 ~eq ( <> ) s s'
let ( < ) s s' = l2 ~eq ( < ) s s'
let ( > ) s s' = l2 ~eq ( > ) s s'
let ( <= ) s s' = l2 ~eq ( <= ) s s'
let ( >= ) s s' = l2 ~eq ( >= ) s s'
let compare s s' = l2 ~eq:Int.eq compare s s'
let ( == ) s s' = l2 ~eq ( == ) s s'
let ( != ) s s' = l2 ~eq ( != ) s s'
end
(* Combinator specialization *)
module type EqType = sig
type 'a t
val equal : 'a t -> 'a t -> bool
end
module type S = sig
type 'a v
val create : 'a v -> 'a v signal * (?step:step -> 'a v -> unit)
val equal : 'a v signal -> 'a v signal -> bool
val hold : 'a v -> 'a v event -> 'a v signal
val app : ('a -> 'b v) signal -> 'a signal -> 'b v signal
val map : ('a -> 'b v) -> 'a signal -> 'b v signal
val filter : ('a v -> bool) -> 'a v -> 'a v signal -> 'a v signal
val fmap : ('a -> 'b v option) -> 'b v -> 'a signal -> 'b v signal
val when_ : bool signal -> 'a v -> 'a v signal -> 'a v signal
val dismiss : 'b event -> 'a v -> 'a v signal -> 'a v signal
val accum : ('a v -> 'a v) event -> 'a v -> 'a v signal
val fold : ('a v -> 'b -> 'a v) -> 'a v -> 'b event -> 'a v signal
val merge : ('a v -> 'b -> 'a v) -> 'a v -> 'b signal list -> 'a v signal
val switch : 'a v signal signal -> 'a v signal
val bind : 'b signal -> ('b -> 'a v signal) -> 'a v signal
val fix : 'a v -> ('a v signal -> 'a v signal * 'b) -> 'b
val l1 : ('a -> 'b v) -> ('a signal -> 'b v signal)
val l2 : ('a -> 'b -> 'c v) -> ('a signal -> 'b signal -> 'c v signal)
val l3 : ('a -> 'b -> 'c -> 'd v) -> ('a signal -> 'b signal -> 'c signal
-> 'd v signal)
val l4 : ('a -> 'b -> 'c -> 'd -> 'e v) ->
('a signal -> 'b signal -> 'c signal -> 'd signal -> 'e v signal)
val l5 : ('a -> 'b -> 'c -> 'd -> 'e -> 'f v) ->
('a signal -> 'b signal -> 'c signal -> 'd signal -> 'e signal ->
'f v signal)
val l6 : ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g v) ->
('a signal -> 'b signal -> 'c signal -> 'd signal -> 'e signal ->
'f signal -> 'g v signal)
end
module Make (Eq : EqType) = struct
type 'a v = 'a Eq.t
let eq = Eq.equal
let create v = create ~eq v
let equal s s' = equal ~eq s s'
let hold v e = hold ~eq v e
let app sf sv = app ~eq sf sv
let map f s = map ~eq f s
let filter pred i = filter ~eq pred i
let fmap fm i = fmap ~eq fm i
let when_ c i s = when_ ~eq c i s
let dismiss c s = dismiss ~eq c s
let accum ef i = accum ~eq ef i
let fold f i = fold ~eq f i
let merge f a sl = merge ~eq f a sl
let switch s = switch ~eq s
let bind s sf = bind ~eq s sf
let fix f = fix ~eq f
let l1 = map
let l2 f s s' = l2 ~eq f s s'
let l3 f s0 s1 s2 = l3 ~eq f s0 s1 s2
let l4 f s0 s1 s2 s3 = l4 ~eq f s0 s1 s2 s3
let l5 f s0 s1 s2 s3 s4 = l5 ~eq f s0 s1 s2 s3 s4
let l6 f s0 s1 s2 s3 s4 s5 = l6 ~eq f s0 s1 s2 s3 s4 s5
end
module Special = struct
module Sb = Make (struct type 'a t = bool let equal = Bool.eq end)
module Si = Make (struct type 'a t = int let equal = Int.eq end)
module Sf = Make (struct type 'a t = float let equal = Float.eq end)
end
end
(*---------------------------------------------------------------------------
Copyright (c) 2009 Daniel C. Bünzli
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.
3. Neither the name of Daniel C. Bünzli nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*)
|