1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*********************************************************************
**
** file: lm.c
**
** Aim: implement linear models.
**
** Copyright (C) 2003 Ben Bolstad
**
** created by: B. M. Bolstad <bolstad@stat.berkeley.edu>
**
** created on: Jun 05, 2003
**
** Last modified: Jun 05, 2003
**
** The aim will be to provide a functions for fitting linear models.
**
**
** History
**
** Jun 05, 2003 - Moved lm_wfit from rlm.c to this file lm.c
** modify lm_wfit to handle cases where weight is 0.
** otherwise bad things will happen when using a psi_fn that
** gives weights of 0.
** Jul 27, 2003 - better handling of cases where a parameter
** is not estimable (set it to NA)
** Sep 14, 2003 - fix a bug where k was where a j should be in a for loop
** Mar 1, 2006 - change all comments to ansi style
** May 19, 2007 - branch out of affyPLM into a new package preprocessCore, then restructure the code. Add doxygen style documentation
**
********************************************************************/
#include <R.h>
#include <Rdefines.h>
#include <Rmath.h>
#include <Rinternals.h>
#include "dqrls.h"
#include "lm.h"
/*************************************************************************
**
** void lm_wfit(double *x, double *y, double *w, int rows, int cols, double tol, double *outbeta, double *outresid)
**
** double *x - coefficient matrix: dimension rows*cols
** double *y - dependent variable: length rows
** double *w - weights for each observation: length rows
** int rows, cols - dimension of input
** double tol - machine tolerance used in qr decomp
** double *outbeta - place to output beta estimates: lenght cols
** double *outresid - place to output residuals: length rows
**
** This function computes weighted linear regression estimates using QR decomposition
** Note that a linpack routine is used to do the actual fit.
**
** For now we will assume that singularities will not exist when doing QR, but will fix later
** if becomes problematic. NB a printf comment is returned when matrix is of full rank
** but still no proper checking.
**
*************************************************************************/
void lm_wfit(double *x, double *y, double *w, int rows, int cols, double tol, double *out_beta, double *out_resids){
int i,j;
int ny = 1;
int k;
int numzero_weights = 0,nrows,totnumzero=0;
double fittedvalue;
double *wts = Calloc(rows,double);
double *x_wts_f = Calloc(rows*cols,double);
double *y_wts_f = Calloc(rows,double);
double *beta = Calloc(cols,double);
double *resid = Calloc(rows,double);
double *qraux = Calloc(cols,double);
double *qty = Calloc(rows,double);
double *work = Calloc(2*cols,double);
int *jpvt = Calloc(cols,int);
for (i=0; i < rows; i++){
if (w[i] == 0.0){
totnumzero++;
}
}
if (totnumzero > 0){
/* we need to chop up the X and Y matricies a little more then removing the
observations that have weight = 0. In particular fit the model removing the weight
0 observations. then to compute the residuals for the weight 0 observations used fitted
values and observed X to compute fitted values */
numzero_weights = 0;
for (i=0; i < rows; i++){
if (w[i] > 0.0){
wts[i - numzero_weights] = sqrt(w[i]);
y_wts_f[i - numzero_weights] = wts[i - numzero_weights]*y[i];
for (j = 0; j < cols; j++){
x_wts_f[j*(rows-totnumzero)+(i-numzero_weights)] = wts[i - numzero_weights]*x[j*rows+i];
}
} else {
numzero_weights++;
}
}
for (j=0;j < cols; j++){
jpvt[j] = j;
}
nrows = rows - numzero_weights;
/* now fit the model */
dqrls_(x_wts_f,&nrows,&cols,y_wts_f,&ny,&tol,beta,resid,qty,&k,jpvt,qraux,work);
if (k != cols){
/* the solution is not of full rank */
/* printf("Improper fit\n"); */
for (j = 0; j < k; j++){
out_beta[j] = beta[jpvt[j]];
}
for(j =k; j < cols; j++){
out_beta[jpvt[j]] = R_NaN;
}
} else {
/* detangle beta and residual estimates */
for (j = 0; j < cols; j++){
out_beta[j] = beta[jpvt[j]];
}
}
/* now the model is fitted, lets compute residuals for the 0 weighted observations
by first computing fitted values. */
numzero_weights = 0;
for (i=0; i < rows; i++){
if (w[i] > 0){
out_resids[i] = resid[i- numzero_weights]/wts[i- numzero_weights];
} else {
/* compute the fitted value */
numzero_weights++;
fittedvalue = 0.0;
for (j=0; j <cols; j++){
if (out_beta[j] != R_NaN){
fittedvalue+=out_beta[j]*x[j*rows+i];
}
}
out_resids[i] = y[i] - fittedvalue;
}
}
} else {
for (i=0; i < rows; i++){
wts[i] = sqrt(w[i]);
}
/* dqrls is a linpack routine for least squares solution */
for (i=0; i < rows; i++){
for (j = 0; j < cols; j++){
x_wts_f[j*rows+i] = wts[i]*x[j*rows+i];
}
}
for (i=0; i < rows; i++){
y_wts_f[i] = wts[i]*y[i];
}
for (j=0;j < cols; j++){
jpvt[j] = j;
}
/* using function from linpack to fit linear model
dqrls_(double *x, int *n, int *p, double *y, int *ny, double *tol, double *b, double *rsd, double *qty, int *k, int *jpvt, double *qraux, double *work);
*/
dqrls_(x_wts_f,&rows,&cols,y_wts_f,&ny,&tol,beta,resid,qty,&k,jpvt,qraux,work);
if (k != cols){
/* the solution is not of full rank */
/* printf("Improper fit\n");*/
for (j = 0; j < k; j++){
out_beta[j] = beta[jpvt[j]];
}
for(j =k; j < cols; j++){
out_beta[j] = R_NaN; /* out_beta[jpvt[j]] = R_NaN; */
}
} else {
/* detangle beta and residual estimates */
for (j = 0; j < cols; j++){
out_beta[j] = beta[jpvt[j]];
}
}
for (i=0; i < rows; i++){
out_resids[i] = resid[i]/wts[i];
/* resid[i] = resid[i]/wts[i]; */
}
}
Free(wts);
Free(x_wts_f);
Free(y_wts_f);
Free(beta);
Free(resid);
Free(qraux);
Free(qty);
Free(work);
Free(jpvt );
}
/**********************************************************************************
**
** void lm_wfit_R(double *x, double *y, double *w, int *rows, int *cols, double *tol, double *out_beta, double *out_resids)
**
** double *x - coefficient matrix: dimension rows*cols
** double *y - dependent variable: length rows
** double *w - weights for each observation: length rows
** int rows, cols - dimension of input
** double tol - machine tolerance used in qr decomp
** double *outbeta - place to output beta estimates: lenght cols
** double *outresid - place to output residuals: length rows
**
** an wrapper that allows us to use .C() calls from R to test the fitting function
**
**
********************************************************************************/
void lm_wfit_R(double *x, double *y, double *w, int *rows, int *cols, double *tol, double *out_beta, double *out_resids){
lm_wfit(x, y, w, *rows, *cols, *tol, out_beta, out_resids);
}
|