1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
### =========================================================================
### Group elements of a vector-like object into a list-like object
### -------------------------------------------------------------------------
###
### What should go in this file?
###
### - All "relist" methods defined in IRanges should go here.
### - extractList() generic and default method.
###
### TODO: Maybe put the default methods for the reverse transformations here
### (unlist, unsplit, and unsplit<-).
###
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### relist()
###
setMethod("relist", c("ANY", "PartitioningByEnd"),
function(flesh, skeleton)
{
ans_class <- relistToClass(flesh)
skeleton_len <- length(skeleton)
if (skeleton_len == 0L) {
flesh_len2 <- 0L
} else {
flesh_len2 <- end(skeleton)[skeleton_len]
}
if (NROW(flesh) != flesh_len2)
stop("shape of 'skeleton' is not compatible with 'NROW(flesh)'")
if (extends(ans_class, "CompressedList"))
return(newCompressedList0(ans_class, flesh, skeleton))
if (!extends(ans_class, "SimpleList"))
stop("don't know how to split or relist a ", class(flesh),
" object as a ", ans_class, " object")
listData <- lapply(skeleton, function(i) extractROWS(flesh, i))
## TODO: Once "window" methods have been revisited/tested and
## 'window(flesh, start=start, end=end)' is guaranteed to do the
## right thing for any 'flesh' object (in particular it subsets a
## data.frame-like object along the rows), then replace the line above
## by the code below (which should be more efficient):
#skeleton_start <- start(skeleton)
#skeleton_end <- end(skeleton)
#FUN <- function(start, end) window(flesh, start=start, end=end)
#names(skeleton_start) <- names(skeleton)
#listData <- mapply(FUN, skeleton_start, skeleton_end)
## or, if we don't trust mapply():
#skeleton_start <- start(skeleton)
#skeleton_end <- end(skeleton)
#X <- seq_len(skeleton_len)
#names(X) <- names(skeleton)
#listData <- lapply(X, function(i) window(flesh,
# start=skeleton_start[i],
# end=skeleton_end[i]))
S4Vectors:::new_SimpleList_from_list(ans_class, listData)
}
)
setMethod("relist", c("ANY", "List"),
function(flesh, skeleton)
{
relist(flesh, PartitioningByEnd(skeleton))
}
)
setMethod("relist", c("Vector", "list"),
function(flesh, skeleton)
{
relist(flesh, PartitioningByEnd(skeleton))
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### default_splitAsList()
###
### 'f' is assumed to be an integer vector with no NAs.
.splitAsList_by_integer <- function(x, f, drop)
{
if (length(f) > NROW(x))
stop("'f' cannot be longer than 'NROW(x)' when it's an integer vector")
if (!identical(drop, FALSE))
warning("'drop' is ignored when 'f' is an integer vector")
f_is_not_sorted <- S4Vectors:::isNotSorted(f)
if (f_is_not_sorted) {
idx <- base::order(f)
f <- f[idx]
x <- extractROWS(x, idx)
}
tmp <- Rle(f)
f <- cumsum(runLength(tmp))
names(f) <- as.character(runValue(tmp))
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be a factor with no NAs.
.splitAsList_by_factor <- function(x, f, drop)
{
x_NROW <- NROW(x)
f_len <- length(f)
f_levels <- levels(f)
f <- as.integer(f)
if (f_len > x_NROW)
f <- head(f, n=x_NROW)
f_is_not_sorted <- S4Vectors:::isNotSorted(f)
if (f_is_not_sorted) {
idx <- base::order(f)
x <- extractROWS(x, idx)
}
f <- tabulate(f, nbins=length(f_levels))
names(f) <- f_levels
if (drop)
f <- f[f != 0L]
f <- cumsum(f)
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be an integer-Rle object with no NAs.
.splitAsList_by_integer_Rle <- function(x, f, drop)
{
if (length(f) > NROW(x))
stop("'f' cannot be longer than data when it's an integer-Rle")
if (!identical(drop, FALSE))
warning("'drop' is ignored when 'f' is an integer-Rle")
f_vals <- runValue(f)
f_lens <- runLength(f)
f_is_not_sorted <- S4Vectors:::isNotSorted(f_vals)
if (f_is_not_sorted) {
idx <- base::order(f_vals)
xranges <- successiveIRanges(f_lens)[idx]
f_vals <- f_vals[idx]
f_lens <- f_lens[idx]
x <- extractROWS(x, xranges)
}
tmp <- Rle(f_vals, f_lens)
f <- cumsum(runLength(tmp))
names(f) <- as.character(runValue(tmp))
f <- PartitioningByEnd(f)
relist(x, f)
}
### 'f' is assumed to be an Rle object with no NAs.
.splitAsList_by_Rle <- function(x, f, drop)
{
x_NROW <- NROW(x)
f_len <- length(f)
f_vals <- runValue(f)
if (!is.factor(f_vals)) {
f_vals <- as.factor(f_vals)
if (f_len > x_NROW) {
runValue(f) <- f_vals
f <- head(f, n=x_NROW)
f_vals <- runValue(f)
}
} else if (f_len > x_NROW) {
f <- head(f, n=x_NROW)
f_vals <- runValue(f)
}
f_lens <- runLength(f)
f_levels <- levels(f_vals)
f_vals <- as.integer(f_vals)
f_is_not_sorted <- S4Vectors:::isNotSorted(f_vals)
if (f_is_not_sorted) {
idx <- base::order(f_vals)
xranges <- successiveIRanges(f_lens)[idx]
x <- extractROWS(x, xranges)
f <- S4Vectors:::tabulate2(f_vals, nbins=length(f_levels),
weight=f_lens)
if (drop) {
f_levels <- f_levels[f != 0L]
f <- f[f != 0L]
}
} else if (length(f_vals) == length(f_levels) || drop) {
if (drop) f_levels <- as.character(runValue(f))
f <- f_lens
} else {
f <- integer(length(f_levels))
f[f_vals] <- f_lens
}
names(f) <- f_levels
f <- cumsum(f)
f <- PartitioningByEnd(f)
relist(x, f)
}
toFactor <- function(x) {
if (is(x, "Rle")) {
runValue(x) <- as.factor(runValue(x))
x
} else as.factor(x)
}
### Took this out of the still-in-incubation LazyList package
interaction2 <- function(factors) {
nI <- length(factors)
nx <- length(factors[[1L]])
factors <- lapply(factors, toFactor)
useRle <- any(vapply(factors, is, logical(1), "Rle"))
if (useRle) {
group <- as(factors[[1L]], "Rle")
runValue(group) <- as.integer(runValue(group))
} else {
group <- as.integer(factors[[1L]])
}
ngroup <- nlevels(factors[[1L]])
for (i in tail(seq_len(nI), -1L)) {
index <- factors[[i]]
if (useRle) {
offset <- as(index, "Rle")
runValue(offset) <- ngroup * (as.integer(runValue(offset)) - 1L)
} else {
offset <- ngroup * (as.integer(index) - 1L)
}
group <- group + offset
ngroup <- ngroup * nlevels(index)
}
if (useRle) {
runValue(group) <- structure(runValue(group),
levels=as.character(seq_len(ngroup)),
class="factor")
group
} else {
structure(group, levels=as.character(seq_len(ngroup)), class="factor")
}
}
normSplitFactor <- function(f, x) {
if (is(f, "formula")) {
if (length(f) == 3L)
stop("formula 'f' should not have a left hand side")
f <- S4Vectors:::formulaValues(x, f)
}
if (is.list(f) || is(f, "List")) {
if (length(f) == 1L) {
f <- toFactor(f[[1L]])
} else {
f <- interaction2(f)
}
}
f_len <- length(f)
if (f_len < NROW(x)) {
if (f_len == 0L)
stop("split factor has length 0 but 'NROW(x)' is > 0")
if (NROW(x) %% f_len != 0L)
warning("'NROW(x)' is not a multiple of split factor length")
f <- rep(f, length.out=NROW(x))
}
f
}
## about 3X faster than as.factor on a ~450k tx ids
## caveats: no NAs, and radix sort of levels does not support all encodings
## todo: Would be faster if sort() returned grouping info,
## but then we might coalesce this with the order/split.
## todo: if we could pass na.rm=TRUE to grouping(), NAs would be handled
as.factor2 <- function(x) {
if (is.factor(x))
return(x)
if (is.null(x))
return(factor())
g <- grouping(x)
p <- PartitioningByEnd(relist(g))
levs <- as.character(x[g[end(p)]])
if (is.character(x)) {
o <- order(levs, method="radix")
map <- integer(length(levs)) # or rep(NA_integer_, length(levs)) for NAs
map[o] <- seq_along(o)
ref <- map[togroup(p)]
levs <- levs[o]
} else {
ref <- togroup(p)
}
f <- integer(length(x))
f[g] <- ref
structure(f, levels=levs, class="factor")
}
### Called by the splitAsList,ANY,ANY method defined in the S4Vectors package.
default_splitAsList <- function(x, f, drop=FALSE)
{
if (!isTRUEorFALSE(drop))
stop("'drop' must be TRUE or FALSE")
f <- normSplitFactor(f, x)
if (anyNA(f)) {
keep_idx <- which(!is.na(f))
x <- extractROWS(x, keep_idx)
f <- f[keep_idx]
}
if (is.integer(f))
return(.splitAsList_by_integer(x, f, drop))
if (!is(f, "Rle")) {
f <- as.factor2(f)
return(.splitAsList_by_factor(x, f, drop))
}
## From now on, 'f' is guaranteed to be an Rle.
f_vals <- runValue(f)
if (!((is.vector(f_vals) && is.atomic(f_vals)) || is.factor(f_vals)))
stop("'f' must be an atomic vector or a factor (possibly in Rle form)")
if (is.integer(f_vals))
return(.splitAsList_by_integer_Rle(x, f, drop))
return(.splitAsList_by_Rle(x, f, drop))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### extractList()
###
### Would extractGroups be a better name for this?
### Or extractGroupedROWS? (analog to extractROWS, except that the ROWS are
### grouped).
###
### 'x' must be a vector-like object and 'i' a list-like object.
### Must return a list-like object parallel to 'i' and with same "shape" as
### 'i' (i.e. same elementNROWS). If 'i' has names, they should be
### propagated to the returned value. The list elements of the returned value
### must have the class of 'x'.
setGeneric("extractList", function(x, i) standardGeneric("extractList"))
### Default method.
setMethod("extractList", c("ANY", "ANY"),
function(x, i)
{
if (is(i, "IntegerRanges"))
return(relist(extractROWS(x, i), i))
if (is.list(i)) {
unlisted_i <- unlist(i, recursive=FALSE, use.names=FALSE)
} else {
i <- as(i, "List", strict=FALSE)
## The various "unlist" methods for List derivatives don't know
## how to operate recursively and don't support the 'recursive'
## arg.
unlisted_i <- unlist(i, use.names=FALSE)
}
relist(extractROWS(x, unlisted_i), i)
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### resplit() and regroup()
###
### Similar to regroupBySupergroup() but there is no assumption that
### the new grouping is a super-grouping of the current grouping. For
### resplit(), the grouping is expressed as a factor, although it is
### effectively a synonym of regroup(), since the latter coerces the
### input to a Grouping.
###
resplit <- function(x, f) {
regroup(x, f)
}
regroup <- function(x, g) {
g <- as(g, "Grouping")
gends <- end(PartitioningByEnd(g))
xg <- x[unlist(g, use.names=FALSE)]
p <- PartitioningByEnd(end(PartitioningByEnd(xg))[gends])
names(p) <- names(g)
relist(unlist(xg, use.names=FALSE, recursive=FALSE), p)
}
|