1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
|
#' Extract results from a DESeq analysis
#'
#' \code{results} extracts a result table from a DESeq analysis giving base means across samples,
#' log2 fold changes, standard errors, test statistics, p-values and adjusted p-values;
#' \code{resultsNames} returns the names of the estimated effects (coefficents) of the model;
#' \code{removeResults} returns a \code{DESeqDataSet} object with results columns removed.
#'
#' The results table when printed will provide the information about
#' the comparison, e.g. "log2 fold change (MAP): condition treated vs untreated", meaning
#' that the estimates are of log2(treated / untreated), as would be returned by
#' \code{contrast=c("condition","treated","untreated")}.
#' Multiple results can be returned for analyses beyond a simple two group comparison,
#' so \code{results} takes arguments \code{contrast} and \code{name} to help
#' the user pick out the comparisons of interest for printing a results table.
#' The use of the \code{contrast} argument is recommended for exact specification
#' of the levels which should be compared and their order.
#'
#' If \code{results} is run without specifying \code{contrast} or \code{name},
#' it will return the comparison of the last level of the last variable in the
#' design formula over the first level of this variable. For example, for a simple two-group
#' comparison, this would return the log2 fold changes of the second group over the
#' first group (the reference level). Please see examples below and in the vignette.
#'
#' The argument \code{contrast} can be used to generate results tables for
#' any comparison of interest, for example, the log2 fold change between
#' two levels of a factor, and its usage is described below. It can also
#' accomodate more complicated numeric comparisons.
#' Note that \code{contrast} will set to 0 the estimated LFC in a
#' comparison of two groups, where all of the counts in the two groups
#' are equal to 0 (while other groups have positive counts), while
#' \code{name} will not automatically set these LFC to 0.
#' The test statistic used for a contrast is:
#'
#' \deqn{ c^t \beta / \sqrt{c^t \Sigma c } }{ c' beta / sqrt( c' Sigma c ) }
#'
#' The argument \code{name} can be used to generate results tables for
#' individual effects, which must be individual elements of \code{resultsNames(object)}.
#' These individual effects could represent continuous covariates, effects
#' for individual levels, or individual interaction effects.
#'
#' Information on the comparison which was used to build the results table,
#' and the statistical test which was used for p-values (Wald test or likelihood ratio test)
#' is stored within the object returned by \code{results}. This information is in
#' the metadata columns of the results table, which is accessible by calling \code{mcols}
#' on the \code{\link{DESeqResults}} object returned by \code{results}.
#'
#' On p-values:
#'
#' By default, independent filtering is performed to select a set of genes
#' for multiple test correction which maximizes the number of adjusted
#' p-values less than a given critical value \code{alpha} (by default 0.1).
#' See the reference in this man page for details on independent filtering.
#' The filter used for maximizing the number of rejections is the mean
#' of normalized counts for all samples in the dataset.
#' Several arguments from the \code{filtered_p} function of
#' the genefilter package (used within the \code{results} function)
#' are provided here to control the independent filtering behavior.
#' (Note \code{filtered_p} R code is now copied into DESeq2
#' package to avoid gfortran requirements.)
#' In DESeq2 version >= 1.10, the threshold that is chosen is
#' the lowest quantile of the filter for which the
#' number of rejections is close to the peak of a curve fit
#' to the number of rejections over the filter quantiles.
#' 'Close to' is defined as within 1 residual standard deviation.
#' The adjusted p-values for the genes which do not pass the filter threshold
#' are set to \code{NA}.
#'
#' By default, \code{results} assigns a p-value of \code{NA}
#' to genes containing count outliers, as identified using Cook's distance.
#' See the \code{cooksCutoff} argument for control of this behavior.
#' Cook's distances for each sample are accessible as a matrix "cooks"
#' stored in the \code{assays()} list. This measure is useful for identifying rows where the
#' observed counts might not fit to a Negative Binomial distribution.
#'
#' For analyses using the likelihood ratio test (using \code{\link{nbinomLRT}}),
#' the p-values are determined solely by the difference in deviance between
#' the full and reduced model formula. A single log2 fold change is printed
#' in the results table for consistency with other results table outputs,
#' however the test statistic and p-values may nevertheless involve
#' the testing of one or more log2 fold changes.
#' Which log2 fold change is printed in the results table can be controlled
#' using the \code{name} argument, or by default this will be the estimated
#' coefficient for the last element of \code{resultsNames(object)}.
#'
#' If \code{useT=TRUE} was specified when running \code{DESeq} or \code{nbinomWaldTest},
#' then the p-value generated by \code{results} will also make use of the
#' t distribution for the Wald statistic, using the degrees of freedom
#' in \code{mcols(object)$tDegreesFreedom}.
#'
#' @references Richard Bourgon, Robert Gentleman, Wolfgang Huber: Independent
#' filtering increases detection power for high-throughput experiments.
#' PNAS (2010), \url{http://dx.doi.org/10.1073/pnas.0914005107}
#'
#' @param object a DESeqDataSet, on which one
#' of the following functions has already been called:
#' \code{\link{DESeq}}, \code{\link{nbinomWaldTest}}, or \code{\link{nbinomLRT}}
#' @param contrast this argument specifies what comparison to extract from
#' the \code{object} to build a results table. one of either:
#' \itemize{
#' \item a character vector with exactly three elements:
#' the name of a factor in the design formula,
#' the name of the numerator level for the fold change,
#' and the name of the denominator level for the fold change
#' (simplest case)
#' \item a list of 2 character vectors: the names of the fold changes
#' for the numerator, and the names of the fold changes
#' for the denominator.
#' these names should be elements of \code{resultsNames(object)}.
#' if the list is length 1, a second element is added which is the
#' empty character vector, \code{character()}.
#' (more general case, can be to combine interaction terms and main effects)
#' \item a numeric contrast vector with one element
#' for each element in \code{resultsNames(object)} (most general case)
#' }
#' If specified, the \code{name} argument is ignored.
#' @param name the name of the individual effect (coefficient) for
#' building a results table. Use this argument rather than \code{contrast}
#' for continuous variables, individual effects or for individual interaction terms.
#' The value provided to \code{name} must be an element of \code{resultsNames(object)}.
#' @param lfcThreshold a non-negative value which specifies a log2 fold change
#' threshold. The default value is 0, corresponding to a test that
#' the log2 fold changes are equal to zero. The user can
#' specify the alternative hypothesis using the \code{altHypothesis} argument,
#' which defaults to testing
#' for log2 fold changes greater in absolute value than a given threshold.
#' If \code{lfcThreshold} is specified,
#' the results are for Wald tests, and LRT p-values will be overwritten.
#' @param altHypothesis character which specifies the alternative hypothesis,
#' i.e. those values of log2 fold change which the user is interested in
#' finding. The complement of this set of values is the null hypothesis which
#' will be tested. If the log2 fold change specified by \code{name}
#' or by \code{contrast} is written as \eqn{ \beta }{ beta }, then the possible values for
#' \code{altHypothesis} represent the following alternate hypotheses:
#' \itemize{
#' \item greaterAbs: \eqn{|\beta| > \textrm{lfcThreshold} }{ |beta| > lfcThreshold },
#' and p-values are two-tailed
#' \item lessAbs: \eqn{ |\beta| < \textrm{lfcThreshold} }{ |beta| < lfcThreshold },
#' p-values are the maximum of the upper and lower tests.
#' The Wald statistic given is positive, an SE-scaled distance from the closest boundary
#' \item greater: \eqn{ \beta > \textrm{lfcThreshold} }{ beta > lfcThreshold }
#' \item less: \eqn{ \beta < -\textrm{lfcThreshold} }{ beta < -lfcThreshold }
#' }
#' @param listValues only used if a list is provided to \code{contrast}:
#' a numeric of length two: the log2 fold changes in the list are multiplied by these values.
#' the first number should be positive and the second negative.
#' by default this is \code{c(1,-1)}
#' @param cooksCutoff theshold on Cook's distance, such that if one or more
#' samples for a row have a distance higher, the p-value for the row is
#' set to NA. The default cutoff is the .99 quantile of the F(p, m-p) distribution,
#' where p is the number of coefficients being fitted and m is the number of samples.
#' Set to \code{Inf} or \code{FALSE} to disable the resetting of p-values to NA.
#' Note: this test excludes the Cook's distance of samples belonging to experimental
#' groups with only 2 samples.
#' @param independentFiltering logical, whether independent filtering should be
#' applied automatically
#' @param alpha the significance cutoff used for optimizing the independent
#' filtering (by default 0.1). If the adjusted p-value cutoff (FDR) will be a
#' value other than 0.1, \code{alpha} should be set to that value.
#' @param filter the vector of filter statistics over which the independent
#' filtering will be optimized. By default the mean of normalized counts is used.
#' @param theta the quantiles at which to assess the number of rejections
#' from independent filtering
#' @param pAdjustMethod the method to use for adjusting p-values, see \code{?p.adjust}
#' @param filterFun an optional custom function for performing independent filtering
#' and p-value adjustment, with arguments \code{res} (a DESeqResults object),
#' \code{filter} (the quantitity for filtering tests),
#' \code{alpha} (the target FDR),
#' \code{pAdjustMethod}. This function should return a DESeqResults object
#' with a \code{padj} column.
#' @param format character, either \code{"DataFrame"},
#' \code{"GRanges"}, or \code{"GRangesList"},
#' whether the results should be printed as a \code{\link{DESeqResults}} DataFrame,
#' or if the results DataFrame should be attached as metadata columns to
#' the \code{GRanges} or \code{GRangesList} \code{rowRanges} of the \code{DESeqDataSet}.
#' If the \code{rowRanges} is a \code{GRangesList}, and \code{GRanges} is requested,
#' the range of each gene will be returned
#' @param saveCols character or numeric vector, the columns of
#' \code{mcols(object)} to pass into the \code{results} output
#' @param test this is automatically detected internally if not provided.
#' the one exception is after \code{nbinomLRT} has been run, \code{test="Wald"}
#' will generate Wald statistics and Wald test p-values.
#' @param addMLE if \code{betaPrior=TRUE} was used (non-default),
#' this logical argument specifies if the "unshrunken" maximum likelihood estimates (MLE)
#' of log2 fold change should be added as a column to the results table (default is FALSE).
#' This argument is preserved for backward compatability, as now \code{betaPrior=TRUE}
#' by default and the recommended pipeline is
#' to generate shrunken MAP estimates using \code{\link{lfcShrink}}.
#' This argument functionality is only implemented for \code{contrast}
#' specified as three element character vectors.
#' @param tidy whether to output the results table with rownames as a first column 'row'.
#' the table will also be coerced to \code{data.frame}
#' @param parallel if FALSE, no parallelization. if TRUE, parallel
#' execution using \code{BiocParallel}, see next argument \code{BPPARAM}
#' @param BPPARAM an optional parameter object passed internally
#' to \code{\link{bplapply}} when \code{parallel=TRUE}.
#' If not specified, the parameters last registered with
#' \code{\link{register}} will be used.
#' @param minmu lower bound on the estimated count (used when calculating contrasts)
#'
#' @return For \code{results}: a \code{\link{DESeqResults}} object, which is
#' a simple subclass of DataFrame. This object contains the results columns:
#' \code{baseMean}, \code{log2FoldChange}, \code{lfcSE}, \code{stat},
#' \code{pvalue} and \code{padj},
#' and also includes metadata columns of variable information.
#' The \code{lfcSE} gives the standard error of the \code{log2FoldChange}.
#' For the Wald test, \code{stat} is the Wald statistic: the \code{log2FoldChange}
#' divided by \code{lfcSE}, which is compared to a standard Normal distribution
#' to generate a two-tailed \code{pvalue}. For the likelihood ratio test (LRT),
#' \code{stat} is the difference in deviance between the reduced model and the full model,
#' which is compared to a chi-squared distribution to generate a \code{pvalue}.
#'
#' For \code{resultsNames}: the names of the columns available as results,
#' usually a combination of the variable name and a level
#'
#' For \code{removeResults}: the original \code{DESeqDataSet} with results metadata columns removed
#'
#' @seealso \code{\link{DESeq}}, \code{\link{lfcShrink}}
#'
#' @examples
#'
#' ## Example 1: two-group comparison
#'
#' dds <- makeExampleDESeqDataSet(m=4)
#'
#' dds <- DESeq(dds)
#' res <- results(dds, contrast=c("condition","B","A"))
#'
#' # with more than two groups, the call would look similar, e.g.:
#' # results(dds, contrast=c("condition","C","A"))
#' # etc.
#'
#' ## Example 2: two conditions, two genotypes, with an interaction term
#'
#' dds <- makeExampleDESeqDataSet(n=100,m=12)
#' dds$genotype <- factor(rep(rep(c("I","II"),each=3),2))
#'
#' design(dds) <- ~ genotype + condition + genotype:condition
#' dds <- DESeq(dds)
#' resultsNames(dds)
#'
#' # the condition effect for genotype I (the main effect)
#' results(dds, contrast=c("condition","B","A"))
#'
#' # the condition effect for genotype II
#' # this is, by definition, the main effect *plus* the interaction term
#' # (the extra condition effect in genotype II compared to genotype I).
#' results(dds, list( c("condition_B_vs_A","genotypeII.conditionB") ))
#'
#' # the interaction term, answering: is the condition effect *different* across genotypes?
#' results(dds, name="genotypeII.conditionB")
#'
#' ## Example 3: two conditions, three genotypes
#'
#' # ~~~ Using interaction terms ~~~
#'
#' dds <- makeExampleDESeqDataSet(n=100,m=18)
#' dds$genotype <- factor(rep(rep(c("I","II","III"),each=3),2))
#' design(dds) <- ~ genotype + condition + genotype:condition
#' dds <- DESeq(dds)
#' resultsNames(dds)
#'
#' # the condition effect for genotype I (the main effect)
#' results(dds, contrast=c("condition","B","A"))
#'
#' # the condition effect for genotype III.
#' # this is the main effect *plus* the interaction term
#' # (the extra condition effect in genotype III compared to genotype I).
#' results(dds, contrast=list( c("condition_B_vs_A","genotypeIII.conditionB") ))
#'
#' # the interaction term for condition effect in genotype III vs genotype I.
#' # this tests if the condition effect is different in III compared to I
#' results(dds, name="genotypeIII.conditionB")
#'
#' # the interaction term for condition effect in genotype III vs genotype II.
#' # this tests if the condition effect is different in III compared to II
#' results(dds, contrast=list("genotypeIII.conditionB", "genotypeII.conditionB"))
#'
#' # Note that a likelihood ratio could be used to test if there are any
#' # differences in the condition effect between the three genotypes.
#'
#' # ~~~ Using a grouping variable ~~~
#'
#' # This is a useful construction when users just want to compare
#' # specific groups which are combinations of variables.
#'
#' dds$group <- factor(paste0(dds$genotype, dds$condition))
#' design(dds) <- ~ group
#' dds <- DESeq(dds)
#' resultsNames(dds)
#'
#' # the condition effect for genotypeIII
#' results(dds, contrast=c("group", "IIIB", "IIIA"))
#'
#' @rdname results
#' @aliases results resultsNames removeResults
#' @export
results <- function(object, contrast, name,
lfcThreshold=0,
altHypothesis=c("greaterAbs","lessAbs","greater","less"),
listValues=c(1,-1),
cooksCutoff,
independentFiltering=TRUE,
alpha=0.1, filter, theta,
pAdjustMethod="BH",
filterFun,
format=c("DataFrame","GRanges","GRangesList"),
saveCols=NULL,
test,
addMLE=FALSE,
tidy=FALSE,
parallel=FALSE, BPPARAM=bpparam(),
minmu=0.5) {
stopifnot(is(object, "DESeqDataSet"))
# match args
format <- match.arg(format, choices=c("DataFrame", "GRanges","GRangesList"))
altHypothesis <- match.arg(altHypothesis, choices=c("greaterAbs","lessAbs","greater","less"))
if (!missing(test)) {
test <- match.arg(test, choices=c("Wald","LRT"))
}
### initial argument testing ###
stopifnot(lfcThreshold >= 0)
stopifnot(length(lfcThreshold)==1)
stopifnot(length(alpha)==1)
stopifnot(alpha > 0 & alpha < 1)
stopifnot(length(pAdjustMethod)==1)
stopifnot(length(listValues)==2 & is.numeric(listValues))
stopifnot(listValues[1] > 0 & listValues[2] < 0)
if (!"results" %in% mcols(mcols(object))$type) {
stop("couldn't find results. you should first run DESeq()")
}
if (missing(test)) {
test <- attr(object, "test")
} else if (test == "Wald" & attr(object, "test") == "LRT") {
# initially test was LRT, now need to add Wald statistics and p-values
object <- makeWaldTest(object)
} else if (test == "LRT" & attr(object, "test") == "Wald") {
stop("the LRT requires the user run nbinomLRT or DESeq(dds,test='LRT')")
}
if (lfcThreshold == 0 & altHypothesis == "lessAbs") {
stop("when testing altHypothesis='lessAbs', set the argument lfcThreshold to a positive value")
}
if (addMLE) {
if (!attr(object,"betaPrior")) {
stop("addMLE=TRUE is only for when a beta prior was used.
otherwise, the log2 fold changes are already MLE")
}
if (!missing(name) & missing(contrast)) {
stop("addMLE=TRUE should be used by providing character vector
of length 3 to 'contrast' instead of using 'name'")
}
}
if (format == "GRanges" & is(rowRanges(object),"GRangesList")) {
if (any(elementNROWS(rowRanges(object)) == 0)) {
stop("rowRanges is GRangesList and one or more GRanges have length 0. Use format='DataFrame' or 'GRangesList'")
}
}
if (!is.null(saveCols)) {
if (is(saveCols, "character"))
stopifnot(all(saveCols %in% colnames(mcols(object))))
if (is(saveCols, "numeric")) {
stopifnot(saveCols == round(saveCols))
stopifnot(min(saveCols) > 0)
stopifnot(max(saveCols) <= ncol(mcols(object)))
}
}
if (!missing(contrast)) {
if (attr(object,"modelMatrixType") == "user-supplied" & is.character(contrast)) {
stop("only list- and numeric-type contrasts are supported for user-supplied model matrices")
}
}
if (is(design(object), "formula")) {
hasIntercept <- attr(terms(design(object)),"intercept") == 1
isExpanded <- attr(object, "modelMatrixType") == "expanded"
termsOrder <- attr(terms.formula(design(object)),"order")
# if no intercept was used or an expanded model matrix was used,
# and neither 'contrast' nor 'name' were specified,
# and no interactions...
# then we create the result table: last / first level for last variable
if ((test == "Wald") & (isExpanded | !hasIntercept) & missing(contrast) & missing(name) & all(termsOrder < 2)) {
designVars <- all.vars(design(object))
lastVarName <- designVars[length(designVars)]
lastVar <- colData(object)[[lastVarName]]
if (is.factor(lastVar)) {
nlvls <- nlevels(lastVar)
contrast <- c(lastVarName, levels(lastVar)[nlvls], levels(lastVar)[1])
}
}
}
if (missing(name)) {
name <- lastCoefName(object)
} else {
if (length(name) != 1 | !is.character(name)) {
stop("the argument 'name' should be a character vector of length 1")
}
}
### done with input argument testing ###
WaldResults <- paste0("WaldPvalue_",name) %in% names(mcols(object))
LRTResults <- "LRTPvalue" %in% names(mcols(object))
# this will be used in cleanContrast, and in the lfcThreshold chunks below
useT <- "tDegreesFreedom" %in% names(mcols(object))
# if performing a contrast call the function cleanContrast()
if (!missing(contrast)) {
resNames <- resultsNames(object)
# do some arg checking/cleaning
contrast <- checkContrast(contrast, resNames)
### cleanContrast call ###
# need to go back to C++ code in order to build the beta covariance matrix
# then this is multiplied by the numeric contrast to get the Wald statistic.
# with 100s of samples, this can get slow, so offer parallelization
if (!parallel) {
res <- cleanContrast(object, contrast, expanded=isExpanded, listValues=listValues,
test=test, useT=useT, minmu=minmu)
} else if (parallel) {
# parallel execution
nworkers <- getNworkers(BPPARAM)
idx <- factor(sort(rep(seq_len(nworkers),length.out=nrow(object))))
res <- do.call(rbind, bplapply(levels(idx), function(l) {
cleanContrast(object[idx == l,,drop=FALSE], contrast,
expanded=isExpanded, listValues=listValues,
test=test, useT=useT, minmu=minmu)
}, BPPARAM=BPPARAM))
}
} else {
# if not performing a contrast
# pull relevant columns from mcols(object)
log2FoldChange <- getCoef(object, name)
lfcSE <- getCoefSE(object, name)
stat <- getStat(object, test, name)
pvalue <- getPvalue(object, test, name)
res <- cbind(mcols(object)["baseMean"],log2FoldChange,lfcSE,stat,pvalue)
names(res) <- c("baseMean","log2FoldChange","lfcSE","stat","pvalue")
}
rownames(res) <- rownames(object)
# add unshrunken MLE coefficients to the results table
if (addMLE) {
if (is.numeric(contrast)) stop("addMLE only implemented for: contrast=c('condition','B','A')")
if (is.list(contrast)) stop("addMLE only implemented for: contrast=c('condition','B','A')")
res <- cbind(res, mleContrast(object, contrast))
res <- res[,c("baseMean","log2FoldChange","lfcMLE","lfcSE","stat","pvalue")]
# if an all zero contrast, also zero out the lfcMLE
res$lfcMLE[ which(res$log2FoldChange == 0 & res$stat == 0) ] <- 0
}
# only if we need to generate new p-values
if ( !(lfcThreshold == 0 & altHypothesis == "greaterAbs") ) {
if (test == "LRT") {
stop("tests of log fold change above or below a theshold must be Wald tests.")
}
# check requirement if betaPrior was set to FALSE
if (altHypothesis == "lessAbs" & attr(object, "betaPrior")) {
stop("testing altHypothesis='lessAbs' requires setting the DESeq() argument betaPrior=FALSE")
}
# easier to read
LFC <- res$log2FoldChange
SE <- res$lfcSE
T <- lfcThreshold
if (useT) {
df <- mcols(object)$tDegreesFreedom
pfunc <- function(q) pt(q, df=df, lower.tail=FALSE)
} else {
pfunc <- function(q) pnorm(q, lower.tail=FALSE)
}
if (altHypothesis == "greaterAbs") {
newStat <- sign(LFC) * pmax((abs(LFC) - T)/SE, 0)
newPvalue <- pmin(1, 2 * pfunc((abs(LFC) - T)/SE))
} else if (altHypothesis == "lessAbs") {
newStatAbove <- pmax((T - LFC)/SE, 0)
pvalueAbove <- pfunc((T - LFC)/SE)
newStatBelow <- pmax((LFC + T)/SE, 0)
pvalueBelow <- pfunc((LFC + T)/SE)
newStat <- pmin(newStatAbove, newStatBelow)
newPvalue <- pmax(pvalueAbove, pvalueBelow)
} else if (altHypothesis == "greater") {
newStat <- pmax((LFC - T)/SE, 0)
newPvalue <- pfunc((LFC - T)/SE)
} else if (altHypothesis == "less") {
newStat <- pmin((LFC + T)/SE, 0)
newPvalue <- pfunc((-T - LFC)/SE)
}
res$stat <- newStat
res$pvalue <- newPvalue
}
# calculate Cook's cutoff
m <- nrow(attr(object,"dispModelMatrix"))
p <- ncol(attr(object,"dispModelMatrix"))
defaultCutoff <- qf(.99, p, m - p)
if (missing(cooksCutoff)) {
cooksCutoff <- defaultCutoff
}
stopifnot(length(cooksCutoff)==1)
if (is.logical(cooksCutoff) & cooksCutoff) {
cooksCutoff <- defaultCutoff
}
# apply cutoff based on maximum Cook's distance
performCooksCutoff <- (is.numeric(cooksCutoff) | cooksCutoff)
if (performCooksCutoff) {
cooksOutlier <- mcols(object)$maxCooks > cooksCutoff
### BEGIN heuristic to avoid filtering genes with low count outliers
# as according to Cook's cutoff. only for two group designs.
# dont filter if three or more counts are larger
if (any(cooksOutlier,na.rm=TRUE) & is(design(object), "formula")) {
designVars <- all.vars(design(object))
if (length(designVars) == 1) {
var <- colData(object)[[designVars]]
if (is(var, "factor") && nlevels(var) == 2) {
dontFilter <- logical(sum(cooksOutlier,na.rm=TRUE))
for (i in seq_along(dontFilter)) {
# index along rows of object
ii <- which(cooksOutlier)[i]
# count for the outlier with max cooks
outCount <- counts(object)[ii,which.max(assays(object)[["cooks"]][ii,])]
# if three or more counts larger than the outlier
if (sum(counts(object)[ii,] > outCount) >= 3) {
# don't filter out the p-value for that gene
dontFilter[i] <- TRUE
}
}
# reset the outlier status for these genes
cooksOutlier[which(cooksOutlier)][dontFilter] <- FALSE
}
}
} ### END heuristic ###
res$pvalue[which(cooksOutlier)] <- NA
}
# if original baseMean was positive, but now zero due to replaced counts, fill in results
if ( sum(mcols(object)$replace, na.rm=TRUE) > 0) {
nowZero <- which(mcols(object)$replace & mcols(object)$baseMean == 0)
res$log2FoldChange[nowZero] <- 0
if (addMLE) { res$lfcMLE[nowZero] <- 0 }
res$lfcSE[nowZero] <- 0
res$stat[nowZero] <- 0
res$pvalue[nowZero] <- 1
}
# add prior information
deseq2.version <- packageVersion("DESeq2")
if (!attr(object,"betaPrior")) {
priorInfo <- list(type="none", package="DESeq2", version=deseq2.version)
} else {
betaPriorVar <- attr(object, "betaPriorVar")
priorInfo <- list(type="normal", package="DESeq2", version=deseq2.version,
betaPriorVar=betaPriorVar)
}
# make results object
deseqRes <- DESeqResults(res, priorInfo=priorInfo)
# p-value adjustment
if (missing(filterFun)) {
deseqRes <- pvalueAdjustment(deseqRes, independentFiltering, filter,
theta, alpha, pAdjustMethod)
} else {
deseqRes <- filterFun(deseqRes, filter, alpha, pAdjustMethod)
}
# stash lfcThreshold
metadata(deseqRes)[["lfcThreshold"]] <- lfcThreshold
# remove rownames and attach as a new column, 'row'
if (tidy) {
colnms <- colnames(deseqRes)
deseqRes$row <- rownames(deseqRes)
mcols(deseqRes,use.names=TRUE)["row","type"] <- "results"
mcols(deseqRes,use.names=TRUE)["row","description"] <- "row names"
deseqRes <- deseqRes[,c("row",colnms)]
rownames(deseqRes) <- NULL
deseqRes <- as.data.frame(deseqRes)
}
# return DataFrame, GRanges or GRangesList
out <- resultsFormatSwitch(object=object, res=deseqRes, format=format, saveCols=saveCols)
return(out)
}
#' @rdname results
#' @export
resultsNames <- function(object) {
names(mcols(object))[grep("log2 fold change",mcols(mcols(object))$description)]
}
#' @rdname results
#' @export
removeResults <- function(object) {
resCols <- mcols(mcols(object))$type == "results"
if (sum(resCols,na.rm=TRUE) > 0) {
mcols(object) <- mcols(object)[,-which(resCols),drop=FALSE]
}
return(object)
}
###########################################################
# unexported functons
###########################################################
pvalueAdjustment <- function(res, independentFiltering, filter,
theta, alpha, pAdjustMethod) {
# perform independent filtering
if (independentFiltering) {
if (missing(filter)) {
filter <- res$baseMean
}
if (missing(theta)) {
lowerQuantile <- mean(filter == 0)
if (lowerQuantile < .95) upperQuantile <- .95 else upperQuantile <- 1
theta <- seq(lowerQuantile, upperQuantile, length=50)
}
# do filtering using genefilter
stopifnot(length(theta) > 1)
stopifnot(length(filter) == nrow(res))
filtPadj <- filtered_p(filter=filter, test=res$pvalue,
theta=theta, method=pAdjustMethod)
numRej <- colSums(filtPadj < alpha, na.rm = TRUE)
# prevent over-aggressive filtering when all genes are null,
# by requiring the max number of rejections is above a fitted curve.
# If the max number of rejection is not greater than 10, then don't
# perform independent filtering at all.
lo.fit <- lowess(numRej ~ theta, f=1/5)
if (max(numRej) <= 10) {
j <- 1
} else {
residual <- if (all(numRej==0)) {
0
} else {
numRej[numRej > 0] - lo.fit$y[numRej > 0]
}
thresh <- max(lo.fit$y) - sqrt(mean(residual^2))
j <- if (any(numRej > thresh)) {
which(numRej > thresh)[1]
} else {
1
}
}
# j <- which.max(numRej) # old method
padj <- filtPadj[, j, drop=TRUE]
cutoffs <- quantile(filter, theta)
filterThreshold <- cutoffs[j]
filterNumRej <- data.frame(theta=theta, numRej=numRej)
filterTheta <- theta[j]
metadata(res)[["filterThreshold"]] <- filterThreshold
metadata(res)[["filterTheta"]] <- filterTheta
metadata(res)[["filterNumRej"]] <- filterNumRej
metadata(res)[["lo.fit"]] <- lo.fit
metadata(res)[["alpha"]] <- alpha
} else {
# regular p-value adjustment
# does not include those rows which were removed
# by maximum Cook's distance
padj <- p.adjust(res$pvalue,method=pAdjustMethod)
}
res$padj <- padj
# add metadata to padj column
mcols(res)$type[names(res)=="padj"] <- "results"
mcols(res)$description[names(res)=="padj"] <- paste(pAdjustMethod,"adjusted p-values")
res
}
# function copied from `genefilter` package to avoid gfortran requirement
filtered_p <- function( filter, test, theta, data, method = "none" ) {
if ( is.function( filter ) )
U1 <- filter( data )
else
U1 <- filter
cutoffs <- quantile( U1, theta )
result <- matrix( NA_real_, length( U1 ), length( cutoffs ) )
colnames( result ) <- names( cutoffs )
for ( i in 1:length( cutoffs ) ) {
use <- U1 >= cutoffs[i]
if( any( use ) ) {
if( is.function( test ) )
U2 <- test( data[use,] )
else
U2 <- test[use]
result[use,i] <- p.adjust( U2, method )
}
}
return( result )
}
# two low-level functions used by results() to perform contrasts
#
# getContrast takes a DESeqDataSet object
# and a numeric vector specifying a contrast
# and returns a vector of Wald statistics
# corresponding to the contrast.
#
# cleanContrast checks for the validity of
# the specified contrast (numeric or character vector)
# and turns character vector contrast into the appropriate
# numeric vector contrast
#
# results() calls cleanContrast() which calls getContrast()
#
# the formula used is:
# c' beta / sqrt( c' sigma c)
# where beta is the coefficient vector
# and sigma is the covariance matrix for beta
getContrast <- function(object, contrast, useT=FALSE, minmu) {
if (missing(contrast)) {
stop("must provide a contrast")
}
if (is.null(attr(object,"modelMatrix"))) {
stop("was expecting a model matrix stored as an attribute of the DESeqDataSet")
}
modelMatrix <- attr(object, "modelMatrix")
# only continue on the rows with non-zero row mean
objectNZ <- object[!mcols(object)$allZero,]
normalizationFactors <- getSizeOrNormFactors(objectNZ)
alpha_hat <- dispersions(objectNZ)
coefColumns <- names(mcols(objectNZ))[grep("log2 fold change",mcols(mcols(object))$description)]
# convert betas to log scale
beta_mat <- log(2) * as.matrix(mcols(objectNZ)[,coefColumns,drop=FALSE])
# convert beta prior variance to log scale
lambda = 1/(log(2)^2 * attr(object,"betaPriorVar"))
# check if DESeq() replaced outliers
countsMatrix <- if ("replaceCounts" %in% assayNames(object)) {
assays(objectNZ)[["replaceCounts"]]
} else {
counts(objectNZ)
}
# use weights if they are present in assays(object)
if ("weights" %in% assayNames(object)) {
useWeights <- TRUE
weights <- assays(object)[["weights"]]
stopifnot(all(weights >= 0))
weights <- weights / apply(weights, 1, max)
} else {
useWeights <- FALSE
weights <- matrix(1, nrow=nrow(object), ncol=ncol(object))
}
betaRes <- fitBeta(ySEXP = countsMatrix, xSEXP = modelMatrix,
nfSEXP = normalizationFactors,
alpha_hatSEXP = alpha_hat,
contrastSEXP = contrast,
beta_matSEXP = beta_mat,
lambdaSEXP = lambda,
weightsSEXP = weights,
useWeightsSEXP = useWeights,
tolSEXP = 1e-8, maxitSEXP = 0,
useQRSEXP=FALSE, # QR not relevant, fitting loop isn't entered
minmuSEXP=minmu)
# convert back to log2 scale
contrastEstimate <- log2(exp(1)) * betaRes$contrast_num
contrastSE <- log2(exp(1)) * betaRes$contrast_denom
contrastStatistic <- contrastEstimate / contrastSE
if (useT) {
stopifnot("tDegreesFreedom" %in% names(mcols(object)))
df <- mcols(objectNZ)$tDegreesFreedom
contrastPvalue <- 2*pt(abs(contrastStatistic),df=df,lower.tail=FALSE)
} else {
contrastPvalue <- 2*pnorm(abs(contrastStatistic),lower.tail=FALSE)
}
contrastList <- list(log2FoldChange=contrastEstimate,
lfcSE=contrastSE,
stat=contrastStatistic,
pvalue=contrastPvalue)
contrastResults <- buildDataFrameWithNARows(contrastList,
mcols(object)$allZero)
names(contrastResults) <- c("log2FoldChange","lfcSE","stat","pvalue")
contrastResults
}
# this function takes a desired contrast as specified by results(),
# performs checks, and then either returns the already existing contrast
# or generates the contrast by calling getContrast() using a numeric vector
cleanContrast <- function(object, contrast, expanded=FALSE, listValues, test, useT, minmu) {
# get the names of columns in the beta matrix
resNames <- resultsNames(object)
# if possible, return pre-computed columns, which are
# already stored in mcols(dds). this will be the case using
# results() with 'name', or if expanded model matrices were not
# run and the contrast contains the reference level as numerator or denominator
resReady <- FALSE
if (is.character(contrast)) {
contrastFactor <- contrast[1]
if (!contrastFactor %in% names(colData(object))) {
stop(paste(contrastFactor,"should be the name of a factor in the colData of the DESeqDataSet"))
}
if (!is(colData(object)[[contrastFactor]], "factor")) {
stop(paste(contrastFactor,"is not a factor, see ?results"))
}
contrastNumLevel <- contrast[2]
contrastDenomLevel <- contrast[3]
contrastBaseLevel <- levels(colData(object)[,contrastFactor])[1]
# check for intercept
hasIntercept <- attr(terms(design(object)),"intercept") == 1
firstVar <- contrastFactor == all.vars(design(object))[1]
# tricky case: if the design has no intercept, the factor is
# not the first variable in the design, and one of the numerator or denominator
# is the reference level, then the desired contrast is simply a coefficient (or -1 times)
noInterceptPullCoef <- !hasIntercept & !firstVar &
(contrastBaseLevel %in% c(contrastNumLevel, contrastDenomLevel))
# case 1: standard model matrices: pull coef or build the appropriate contrast
# coefficients names are of the form "factor_level_vs_baselevel"
# output: contrastNumColumn and contrastDenomColumn
if (!expanded & (hasIntercept | noInterceptPullCoef)) {
# use make.names() so the column names are
# the same as created by DataFrame in mcols(object).
contrastNumColumn <- make.names(paste0(contrastFactor,"_",contrastNumLevel,"_vs_",contrastBaseLevel))
contrastDenomColumn <- make.names(paste0(contrastFactor,"_",contrastDenomLevel,"_vs_",contrastBaseLevel))
# check that the desired contrast is already
# available in mcols(object), and then we can either
# take it directly or multiply the log fold
# changes and Wald stat by -1
if ( contrastDenomLevel == contrastBaseLevel ) {
cleanName <- paste(contrastFactor,contrastNumLevel,"vs",contrastDenomLevel)
# the results can be pulled directly from mcols(object)
name <- if (!noInterceptPullCoef) {
make.names(paste0(contrastFactor,"_",contrastNumLevel,"_vs_",contrastDenomLevel))
} else {
make.names(paste0(contrastFactor,contrastNumLevel))
}
if (!name %in% resNames) {
stop(paste("as",contrastDenomLevel,"is the reference level, was expecting",name,"to be present in 'resultsNames(object)'"))
}
log2FoldChange <- getCoef(object, name)
lfcSE <- getCoefSE(object, name)
stat <- getStat(object, test, name)
pvalue <- getPvalue(object, test, name)
res <- cbind(mcols(object)["baseMean"],log2FoldChange,lfcSE,stat,pvalue)
names(res) <- c("baseMean","log2FoldChange","lfcSE","stat","pvalue")
lfcType <- if (attr(object,"betaPrior")) "MAP" else "MLE"
lfcDesc <- paste0("log2 fold change (",lfcType,"): ",cleanName)
mcols(res,use.names=TRUE)["log2FoldChange","description"] <- lfcDesc
resReady <- TRUE
} else if ( contrastNumLevel == contrastBaseLevel ) {
# fetch the results for denom vs num
# and mutiply the log fold change and stat by -1
cleanName <- paste(contrastFactor,contrastNumLevel,"vs",contrastDenomLevel)
swapName <- if (!noInterceptPullCoef) {
make.names(paste0(contrastFactor,"_",contrastDenomLevel,"_vs_",contrastNumLevel))
} else {
make.names(paste0(contrastFactor,contrastDenomLevel))
}
if (!swapName %in% resNames) {
stop(paste("as",contrastNumLevel,"is the reference level, was expecting",swapName,"to be present in 'resultsNames(object)'"))
}
log2FoldChange <- getCoef(object, swapName)
lfcSE <- getCoefSE(object, swapName)
stat <- getStat(object, test, swapName)
pvalue <- getPvalue(object, test, swapName)
res <- cbind(mcols(object)["baseMean"],log2FoldChange,lfcSE,stat,pvalue)
names(res) <- c("baseMean","log2FoldChange","lfcSE","stat","pvalue")
res$log2FoldChange <- -1 * res$log2FoldChange
if (test == "Wald") res$stat <- -1 * res$stat
lfcType <- if (attr(object,"betaPrior")) "MAP" else "MLE"
# rename some of the columns using the flipped contrast
if (test == "Wald") {
contrastDescriptions <- paste(c(paste0("log2 fold change (",lfcType,"):"),
"standard error:",
"Wald statistic:","Wald test p-value:"), cleanName)
mcols(res,use.names=TRUE)[c("log2FoldChange","lfcSE","stat","pvalue"),
"description"] <- contrastDescriptions
} else {
contrastDescriptions <- paste(c(paste0("log2 fold change (",lfcType,"):"),
"standard error:"), cleanName)
mcols(res,use.names=TRUE)[c("log2FoldChange","lfcSE"),
"description"] <- contrastDescriptions
}
resReady <- TRUE
} else {
# check for the case where neither are present
# as comparisons against reference level
if ( ! (contrastNumColumn %in% resNames &
contrastDenomColumn %in% resNames) ) {
stop(paste(contrastNumLevel,"and",contrastDenomLevel,"should be levels of",contrastFactor,"such that",contrastNumColumn,"and",contrastDenomColumn,"are contained in 'resultsNames(object)'"))
}
}
# case 2: expanded model matrices or no intercept and first variable
# need to then build the appropriate contrast.
# these coefficient names have the form "factorlevel"
# output: contrastNumColumn and contrastDenomColumn
} else {
# we only need to check validity
contrastNumColumn <- make.names(paste0(contrastFactor, contrastNumLevel))
contrastDenomColumn <- make.names(paste0(contrastFactor, contrastDenomLevel))
if ( ! (contrastNumColumn %in% resNames & contrastDenomColumn %in% resNames) ) {
stop(paste(paste0(contrastFactor,contrastNumLevel),"and",paste0(contrastFactor,contrastDenomLevel),
"are expected to be in resultsNames(object)"))
}
}
# check if both levels have all zero counts
# (this has to be down here to make use of error checking above)
contrastAllZero <- contrastAllZeroCharacter(object, contrastFactor,
contrastNumLevel, contrastDenomLevel)
}
# if the result table not already built in the above code
if (!resReady) {
# here, a numeric / list / character contrast which will be converted
# into a numeric contrast and run through getContrast()
if (is.numeric(contrast)) {
# make name for numeric contrast
signMap <- c("","","+")
contrastSigns <- signMap[sign(contrast)+2]
contrastName <- paste(paste0(contrastSigns,as.character(contrast)),collapse=",")
} else if (is.list(contrast)) {
# interpret list contrast into numeric and make a name for the contrast
lc1 <- length(contrast[[1]])
lc2 <- length(contrast[[2]])
# these just used for naming
listvalname1 <- round(listValues[1],3)
listvalname2 <- round(listValues[2],3)
if (lc1 > 0 & lc2 > 0) {
listvalname2 <- abs(listvalname2)
listvalname1 <- if (listvalname1 == 1) "" else paste0(listvalname1," ")
listvalname2 <- if (listvalname2 == 1) "" else paste0(listvalname2," ")
contrastName <- paste0(listvalname1,paste(contrast[[1]],collapse="+")," vs ",listvalname2,paste(contrast[[2]],collapse="+"))
} else if (lc1 > 0 & lc2 == 0) {
listvalname1 <- if (listvalname1 == 1) "" else paste0(listvalname1," ")
contrastName <- paste0(listvalname1,paste(contrast[[1]],collapse="+")," effect")
} else if (lc1 == 0 & lc2 > 0) {
contrastName <- paste(listvalname2,paste(contrast[[2]],collapse="+"),"effect")
}
contrastNumeric <- rep(0,length(resNames))
contrastNumeric[resNames %in% contrast[[1]]] <- listValues[1]
contrastNumeric[resNames %in% contrast[[2]]] <- listValues[2]
contrast <- contrastNumeric
} else if (is.character(contrast)) {
# interpret character contrast into numeric and make a name for the contrast
contrastNumeric <- rep(0,length(resNames))
contrastNumeric[resNames == contrastNumColumn] <- 1
contrastNumeric[resNames == contrastDenomColumn] <- -1
contrast <- contrastNumeric
contrastName <- paste(contrastFactor,contrastNumLevel,"vs",contrastDenomLevel)
}
contrastAllZero <- contrastAllZeroNumeric(object, contrast)
# now get the contrast
contrastResults <- getContrast(object, contrast, useT=useT, minmu)
lfcType <- if (attr(object,"betaPrior")) "MAP" else "MLE"
contrastDescriptions <- paste(c(paste0("log2 fold change (",lfcType,"):"),
"standard error:",
"Wald statistic:",
"Wald test p-value:"),
contrastName)
mcols(contrastResults) <- DataFrame(type=rep("results",ncol(contrastResults)),
description=contrastDescriptions)
res <- cbind(mcols(object)["baseMean"],
contrastResults)
}
# if the counts in all samples included in contrast are zero
# then zero out the LFC, Wald stat and p-value set to 1
contrastAllZero <- contrastAllZero & !mcols(object)$allZero
if (sum(contrastAllZero) > 0) {
res$log2FoldChange[contrastAllZero] <- 0
res$stat[contrastAllZero] <- 0
res$pvalue[contrastAllZero] <- 1
}
# if test is "LRT", overwrite the statistic and p-value
# (we only ran contrast for the coefficient)
if (test == "LRT") {
stat <- getStat(object, test, name=NULL)
pvalue <- getPvalue(object, test, name=NULL)
res <- cbind(res[c("baseMean","log2FoldChange","lfcSE")],stat,pvalue)
names(res) <- c("baseMean","log2FoldChange","lfcSE","stat","pvalue")
}
return(res)
}
# convenience function to guess the name of the last coefficient
# in the model matrix, unless specified this will be used for
# plots and accessor functions
lastCoefName <- function(object) {
resNms <- resultsNames(object)
resNms[length(resNms)]
}
# functions to get coef, coefSE, pvalues and padj from mcols(object)
getCoef <- function(object,name) {
if (missing(name)) {
name <- lastCoefName(object)
}
mcols(object)[name]
}
getCoefSE <- function(object,name) {
if (missing(name)) {
name <- lastCoefName(object)
}
mcols(object)[paste0("SE_",name)]
}
getStat <- function(object,test="Wald",name) {
if (missing(name)) {
name <- lastCoefName(object)
}
if (test == "Wald") {
return(mcols(object)[paste0("WaldStatistic_",name)])
} else if (test == "LRT") {
return(mcols(object)["LRTStatistic"])
} else {
stop("unknown test")
}
}
getPvalue <- function(object,test="Wald",name) {
if (missing(name)) {
name <- lastCoefName(object)
}
if (test == "Wald") {
return(mcols(object)[paste0("WaldPvalue_",name)])
} else if (test == "LRT") {
return(mcols(object)["LRTPvalue"])
} else {
stop("unknown test")
}
}
# convenience function to make more descriptive names
# for factor variables
renameModelMatrixColumns <- function(data, design) {
data <- as.data.frame(data)
designVars <- all.vars(design)
designVarsClass <- sapply(designVars, function(v) class(data[[v]]))
factorVars <- designVars[designVarsClass == "factor"]
colNamesFrom <- make.names(do.call(c,lapply(factorVars, function(v) paste0(v,levels(data[[v]])[-1]))))
colNamesTo <- make.names(do.call(c,lapply(factorVars, function(v) paste0(v,"_",levels(data[[v]])[-1],"_vs_",levels(data[[v]])[1]))))
data.frame(from=colNamesFrom,to=colNamesTo,stringsAsFactors=FALSE)
}
makeWaldTest <- function(object) {
betaMatrix <- as.matrix(mcols(object)[,grep("log2 fold change",mcols(mcols(object))$description),drop=FALSE])
modelMatrixNames <- colnames(betaMatrix)
betaSE <- as.matrix(mcols(object)[,grep("standard error",mcols(mcols(object))$description),drop=FALSE])
WaldStatistic <- betaMatrix/betaSE
colnames(WaldStatistic) <- paste0("WaldStatistic_",modelMatrixNames)
# don't need to worry about t distribution here bc nbniomLRT() was run
WaldPvalue <- 2*pnorm(abs(WaldStatistic),lower.tail=FALSE)
colnames(WaldPvalue) <- paste0("WaldPvalue_",modelMatrixNames)
modelMatrixNamesSpaces <- gsub("_"," ",modelMatrixNames)
statInfo <- paste("Wald statistic:",modelMatrixNamesSpaces)
pvalInfo <- paste("Wald test p-value:",modelMatrixNamesSpaces)
WaldResults <- DataFrame(c(matrixToList(WaldStatistic), matrixToList(WaldPvalue)))
mcols(WaldResults) <- DataFrame(type = rep("results",ncol(WaldResults)),
description = c(statInfo, pvalInfo))
mcols(object) <- cbind(mcols(object),WaldResults)
return(object)
}
mleContrast <- function(object, contrast) {
contrastFactor <- contrast[1]
contrastNumLevel <- contrast[2]
contrastDenomLevel <- contrast[3]
contrastRefLevel <- levels(colData(object)[,contrastFactor])[1]
contrastNumColumn <- make.names(paste0("MLE_",contrastFactor,"_",contrastNumLevel,"_vs_",contrastRefLevel))
contrastDenomColumn <- make.names(paste0("MLE_",contrastFactor,"_",contrastDenomLevel,"_vs_",contrastRefLevel))
cleanName <- paste("log2 fold change (MLE):",contrastFactor,contrastNumLevel,"vs",contrastDenomLevel)
if ( contrastDenomLevel == contrastRefLevel ) {
name <- make.names(paste0("MLE_",contrastFactor,"_",contrastNumLevel,"_vs_",contrastDenomLevel))
lfcMLE <- mcols(object)[name]
} else if ( contrastNumLevel == contrastRefLevel ) {
swapName <- make.names(paste0("MLE_",contrastFactor,"_",contrastDenomLevel,"_vs_",contrastNumLevel))
lfcMLE <- mcols(object)[swapName]
lfcMLE[[1]] <- -1 * lfcMLE[[swapName]]
} else {
numMLE <- mcols(object)[[contrastNumColumn]]
denomMLE <- mcols(object)[[contrastDenomColumn]]
lfcMLE <- mcols(object)[contrastNumColumn]
lfcMLE[[1]] <- numMLE - denomMLE
}
names(lfcMLE) <- "lfcMLE"
mcols(lfcMLE)$description <- cleanName
lfcMLE
}
checkContrast <- function(contrast, resNames) {
if (!(is.numeric(contrast) | is.character(contrast) | is.list(contrast))) {
stop("'contrast' vector should be either a character vector of length 3,
a list of length 2 containing character vectors,
or a numeric vector, see the argument description in ?results")
}
# character
if (is.character(contrast)) {
if (length(contrast) != 3) {
stop("'contrast', as a character vector of length 3, should have the form:
contrast = c('factorName','numeratorLevel','denominatorLevel'),
see the manual page of ?results for more information")
}
if (contrast[2] == contrast[3]) {
stop(paste(contrast[2],"and",contrast[3],"should be different level names"))
}
}
# list
if (is.list(contrast)) {
if (length(contrast) == 1) {
contrast <- list(contrast[[1]], character())
}
if (length(contrast) != 2) {
stop("'contrast', as a list, should have length 2, or, if length 1,
an empty vector will be added for the second element.
see the manual page of ?results for more information")
}
if (!(is.character(contrast[[1]]) & is.character(contrast[[2]]))) {
stop("'contrast', as a list of length 2, should have character vectors as elements,
see the manual page of ?results for more information")
}
if (!all(c(contrast[[1]],contrast[[2]]) %in% resNames)) {
stop("all elements of the contrast as a list of length 2 should be elements of 'resultsNames(object)'")
}
if (length(intersect(contrast[[1]], contrast[[2]])) > 0) {
stop("elements in the contrast list should only appear in the numerator (first element of contrast list)
or the denominator (second element of contrast list), but not both")
}
if (length(c(contrast[[1]],contrast[[2]])) == 0) {
stop("one of the two elements in the list should be a character vector of non-zero length")
}
}
# numeric
if (is.numeric(contrast)) {
if (length(contrast) != length(resNames) )
stop("numeric contrast vector should have one element for every element of 'resultsNames(object)'")
if (all(contrast==0)) {
stop("numeric contrast vector cannot have all elements equal to 0")
}
}
return(contrast)
}
# function to determine output of results() and lfcShrink()
resultsFormatSwitch <- function(object, res, format, saveCols) {
if (format == "DataFrame") {
out <- res
} else if (format == "GRangesList") {
if (is(rowRanges(object), "GRanges")) warning("rowRanges is GRanges")
out <- rowRanges(object)
mcols(out) <- res
} else if (format == "GRanges") {
if (is(rowRanges(object), "GRangesList")) {
message("rowRanges is GRangesList, performing unlist(range(x)) on the rowRanges")
out <- unlist(range(rowRanges(object)))
mcols(out) <- res
} else {
out <- rowRanges(object)
mcols(out) <- res
}
}
# code to save certain columns of mcols(rowRanges) / rowData
if (!is.null(saveCols)) {
mcols2Save <- mcols(object)[,saveCols,drop=FALSE]
if (format == "DataFrame") {
out <- cbind(out, mcols2Save)
} else {
mcols(out) <- cbind(mcols(out), mcols2Save)
}
}
out
}
contrastAllZeroCharacter <- function(object, contrastFactor,
contrastNumLevel, contrastDenomLevel) {
cts <- counts(object)
f <- colData(object)[[contrastFactor]]
cts.sub <- cts[ , f %in% c(contrastNumLevel, contrastDenomLevel), drop=FALSE ]
rowSums( cts.sub == 0 ) == ncol(cts.sub)
}
contrastAllZeroNumeric <- function(object, contrast) {
if (is.null(attr(object,"modelMatrix"))) {
stop("was expecting a model matrix stored as an attribute of the DESeqDataSet")
}
modelMatrix <- attr(object, "modelMatrix")
# note: this extra leg-work to zero out LFC, lfcSE, and set p-value to 1
# for contrasts comparing groups where both groups have all zeros.
# it is only implemented for the case in which we can identify
# the relevant samples by multiplying the model matrix
# with a vector where the non-zero elements of the numeric contrast
# are replaced with 1.
# so, this code will not zero out in the case of standard model matrices
# where the user supplies a numeric contrast that pulls out a single column
# of the model matrix, for example.
if (all(contrast >= 0) | all(contrast <= 0)) {
return( rep(FALSE, nrow(object)) )
}
contrastBinary <- ifelse(contrast == 0, 0, 1)
whichSamples <- ifelse(modelMatrix %*% contrastBinary == 0, 0, 1)
zeroTest <- counts(object) %*% whichSamples
zeroTest == 0
}
|