[go: up one dir, main page]

File: helper.R

package info (click to toggle)
r-bioc-deseq2 1.38.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,716 kB
  • sloc: cpp: 413; makefile: 2
file content (565 lines) | stat: -rw-r--r-- 21,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#' Unmix samples using loss in a variance stabilized space
#'
#' Unmixes samples in \code{x} according to \code{pure} components,
#' using numerical optimization. The components in \code{pure}
#' are added on the scale of gene expression (either normalized counts, or TPMs).
#' The loss function when comparing fitted expression to the
#' samples in \code{x} occurs in a variance stabilized space.
#' This task is sometimes referred to as "deconvolution",
#' and can be used, for example, to identify contributions from
#' various tissues.
#' Note: some groups have found that the mixing contributions
#' may be more accurate if very lowly expressed genes across \code{x}
#' and \code{pure} are first removed. We have not explored this fully.
#' Note: if the \code{pbapply} package is installed a progress bar
#' will be displayed while mixing components are fit.
#'
#' @param x normalized counts or TPMs of the samples to be unmixed
#' @param pure normalized counts or TPMs of the "pure" samples
#' @param alpha for normalized counts, the dispersion of the data
#' when a negative binomial model is fit. this can be found by examining
#' the asymptotic value of \code{dispersionFunction(dds)}, when using
#' \code{fitType="parametric"} or the mean value when using
#' \code{fitType="mean"}.
#' @param shift for TPMs, the shift which approximately stabilizes the variance
#' of log shifted TPMs. Can be assessed with \code{vsn::meanSdPlot}.
#' @param power either 1 (for L1) or 2 (for squared) loss function.
#' Default is 1.
#' @param format \code{"matrix"} or \code{"list"}, default is \code{"matrix"}.
#' whether to output just the matrix of mixture components, or a list (see Value).
#' 
#' @param quiet suppress progress bar. default is FALSE, show progress bar
#' if pbapply is installed.
#'
#' @return a matrix, the mixture components for each sample in \code{x} (rows).
#' The "pure" samples make up the columns, and so each row sums to 1.
#' If colnames existed on the input matrices they will be propagated to the output matrix.
#' If \code{format="list"}, then a list, containing as elements:
#' (1) the matrix of mixture components,
#' (2) the correlations in the variance stabilized space of the fitted samples
#' to the samples in \code{x}, and
#' (3) the fitted samples as a matrix with the same dimension as \code{x}.
#'
#' @examples
#'
#' # some artificial data
#' cts <- matrix(c(80,50,1,100,
#'                 1,1,60,100,
#'                 0,50,60,100), ncol=4, byrow=TRUE)
#' # make a DESeqDataSet
#' dds <- DESeqDataSetFromMatrix(cts,
#'   data.frame(row.names=seq_len(ncol(cts))), ~1)
#' colnames(dds) <- paste0("sample",1:4)
#'
#' # note! here you would instead use
#' # estimateSizeFactors() to do actual normalization
#' sizeFactors(dds) <- rep(1, ncol(dds))
#'
#' norm.cts <- counts(dds, normalized=TRUE)
#'
#' # 'pure' should also have normalized counts...
#' pure <- matrix(c(10,0,0,
#'                  0,0,10,
#'                  0,10,0), ncol=3, byrow=TRUE)
#' colnames(pure) <- letters[1:3]
#' 
#' # for real data, you need to find alpha after fitting estimateDispersions()
#' mix <- unmix(norm.cts, pure, alpha=0.01)
#' 
#' @export
unmix <- function(x, pure, alpha, shift, power=1, format="matrix", quiet=FALSE) {

  format <- match.arg(format, c("matrix","list"))
  if (missing(alpha)) stopifnot(!missing(shift))
  if (missing(shift)) stopifnot(!missing(alpha))
  stopifnot(missing(shift) | missing(alpha))
  stopifnot(power %in% 1:2)
  stopifnot(nrow(x) == nrow(pure))
  stopifnot(ncol(pure) > 1)
  
  if (requireNamespace("pbapply", quietly=TRUE) & !quiet) {
    lapply <- pbapply::pblapply
  }

  cor.msg <- "some columns of 'pure' are highly correlated (>.99 after VST),
  may result in instabilty of unmix(). visually inspect correlations of 'pure'"
  
  if (missing(shift)) {
    stopifnot(alpha > 0)
    # variance stabilizing transformation for NB w/ fixed dispersion alpha
    vst <- function(q, alpha) ( 2 * asinh(sqrt(alpha * q)) - log(alpha) - log(4) ) / log(2)
    pure.cor <- cor(vst(pure, alpha)); diag(pure.cor) <- 0
    if (any(pure.cor > .99)) warning(cor.msg)
    sumLossVST <- function(p, i, vst, alpha, power) {
      sum(abs(vst(x[,i], alpha) - vst(pure %*% p, alpha))^power)
    }
    res <- lapply(seq_len(ncol(x)), function(i) {
      optim(par=rep(1, ncol(pure)), fn=sumLossVST, gr=NULL, i, vst, alpha, power,
            method="L-BFGS-B", lower=0, upper=100)$par
    })
  } else {
    stopifnot(shift > 0)
    # VST of shifted log
    vstSL <- function(q, shift) log(q + shift)
    pure.cor <- cor(vstSL(pure, shift)); diag(pure.cor) <- 0
    if (any(pure.cor > .99)) warning(cor.msg)
    sumLossSL <- function(p, i, vst, shift, power) {
      sum(abs(vstSL(x[,i], shift) - vstSL(pure %*% p, shift))^power)
    }
    res <- lapply(seq_len(ncol(x)), function(i) {
      optim(par=rep(1, ncol(pure)), fn=sumLossSL, gr=NULL, i, vstSL, shift, power,
            method="L-BFGS-B", lower=0, upper=100)$par
    })
  }

  mix <- do.call(rbind, res)
  mix <- mix / rowSums(mix)
  colnames(mix) <- colnames(pure)
  rownames(mix) <- colnames(x)

  if (format == "matrix") {
    return(mix)
  } else {
    fitted <- pure %*% t(mix)
    cor <- if (missing(shift)) {
      cor(vst(x, alpha), vst(fitted, alpha))
    } else {
      cor(vstSL(x, shift), vstSL(fitted, shift))
    }
    return(list(mix=mix, cor=diag(cor), fitted=fitted))
  }
  
}

#' Collapse technical replicates in a RangedSummarizedExperiment or DESeqDataSet
#'
#' Collapses the columns in \code{object} by summing within levels
#' of a grouping factor \code{groupby}. The purpose of this function
#' is to sum up read counts from technical replicates to create an object
#' with a single column of read counts for each sample.
#' Note: by "technical replicates", we mean multiple sequencing runs of the same
#' library, in constrast to "biological replicates" in which multiple
#' libraries are prepared from separate biological units.
#' Optionally renames the columns of returned object with the levels of the
#' grouping factor.
#' Note: this function is written very simply and
#' can be easily altered to produce other behavior by examining the source code.
#'
#' @param object A \code{RangedSummarizedExperiment} or \code{DESeqDataSet}
#' @param groupby a grouping factor, as long as the columns of object
#' @param run optional, the names of each unique column in object. if provided,
#' a new column \code{runsCollapsed} will be added to the \code{colData}
#' which pastes together the names of \code{run}
#' @param renameCols whether to rename the columns of the returned object
#' using the levels of the grouping factor
#'
#' @return the \code{object} with as many columns as levels in \code{groupby}.
#' This object has assay/count data which is summed from the various
#' columns which are grouped together, and the \code{colData} is subset using
#' the first column for each group in \code{groupby}.
#'
#' @examples
#'
#' dds <- makeExampleDESeqDataSet(m=12)
#' 
#' # make data with two technical replicates for three samples
#' dds$sample <- factor(sample(paste0("sample",rep(1:9, c(2,1,1,2,1,1,2,1,1)))))
#' dds$run <- paste0("run",1:12)
#'
#' ddsColl <- collapseReplicates(dds, dds$sample, dds$run)
#'
#' # examine the colData and column names of the collapsed data
#' colData(ddsColl)
#' colnames(ddsColl)
#'
#' # check that the sum of the counts for "sample1" is the same
#' # as the counts in the "sample1" column in ddsColl
#' matchFirstLevel <- dds$sample == levels(dds$sample)[1]
#' stopifnot(all(rowSums(counts(dds[,matchFirstLevel])) == counts(ddsColl[,1])))
#' 
#' @export
collapseReplicates <- function(object, groupby, run, renameCols=TRUE) {
  if (!is.factor(groupby)) groupby <- factor(groupby)
  groupby <- droplevels(groupby)
  stopifnot(length(groupby) == ncol(object))
  sp <- split(seq(along=groupby), groupby)
  countdata <- sapply(sp, function(i) rowSums(assay(object)[,i,drop=FALSE]))
  mode(countdata) <- "integer"
  colsToKeep <- sapply(sp, `[`, 1)
  collapsed <- object[,colsToKeep]
  dimnames(countdata) <- dimnames(collapsed)
  assay(collapsed) <- countdata
  if (!missing(run)) {
    stopifnot(length(groupby) == length(run))
    colData(collapsed)$runsCollapsed <- sapply(sp, function(i) paste(run[i],collapse=","))
  }
  if (renameCols) {
    colnames(collapsed) <- levels(groupby)
  }
  stopifnot(sum(as.numeric(assay(object))) == sum(as.numeric(assay(collapsed))))
  collapsed
}

#' FPKM: fragments per kilobase per million mapped fragments
#'
#' The following function returns fragment counts normalized
#' per kilobase of feature length per million mapped fragments
#' (by default using a robust estimate of the library size,
#' as in \code{\link{estimateSizeFactors}}).
#'
#' The length of the features (e.g. genes) is calculated one of two ways:
#' (1) If there is a matrix named "avgTxLength" in \code{assays(dds)},
#' this will take precedence in the length normalization.
#' This occurs when using the tximport-DESeq2 pipeline.
#' (2) Otherwise, feature length is calculated 
#' from the \code{rowRanges} of the dds object,
#' if a column \code{basepairs} is not present in \code{mcols(dds)}.
#' The calculated length is the number of basepairs in the union of all \code{GRanges}
#' assigned to a given row of \code{object}, e.g., 
#' the union of all basepairs of exons of a given gene.
#' Note that the second approach over-estimates the gene length
#' (average transcript length, weighted by abundance is a more appropriate
#' normalization for gene counts), and so the FPKM will be an underestimate of the true value.
#' 
#' Note that, when the read/fragment counting has inter-feature dependencies, a strict
#' normalization would not incorporate the basepairs of a feature which
#' overlap another feature. This inter-feature dependence is not taken into
#' consideration in the internal union basepair calculation.
#'
#' @param object a \code{DESeqDataSet}
#' @param robust whether to use size factors to normalize
#' rather than taking the column sums of the raw counts,
#' using the \code{\link{fpm}} function.
#'
#' @return a matrix which is normalized per kilobase of the
#' union of basepairs in the \code{GRangesList} or \code{GRanges}
#' of the mcols(object), and per million of mapped fragments,
#' either using the robust median ratio method (robust=TRUE, default)
#' or using raw counts (robust=FALSE).
#' Defining a column \code{mcols(object)$basepairs} takes
#' precedence over internal calculation of the kilobases for each row.
#'
#' @examples
#'
#' # create a matrix with 1 million counts for the
#' # 2nd and 3rd column, the 1st and 4th have
#' # half and double the counts, respectively.
#' m <- matrix(1e6 * rep(c(.125, .25, .25, .5), each=4),
#'             ncol=4, dimnames=list(1:4,1:4))
#' mode(m) <- "integer"
#' se <- SummarizedExperiment(list(counts=m), colData=DataFrame(sample=1:4))
#' dds <- DESeqDataSet(se, ~ 1)
#' 
#' # create 4 GRanges with lengths: 1, 1, 2, 2.5 Kb
#' gr1 <- GRanges("chr1",IRanges(1,1000)) # 1kb
#' gr2 <- GRanges("chr1",IRanges(c(1,1001),c( 500,1500))) # 1kb
#' gr3 <- GRanges("chr1",IRanges(c(1,1001),c(1000,2000))) # 2kb
#' gr4 <- GRanges("chr1",IRanges(c(1,1001),c(200,1300))) # 500bp
#' rowRanges(dds) <- GRangesList(gr1,gr2,gr3,gr4)
#' 
#' # the raw counts
#' counts(dds)
#'
#' # the FPM values
#' fpm(dds)
#' 
#' # the FPKM values
#' fpkm(dds)
#' 
#' @seealso \code{\link{fpm}}
#'
#' @docType methods
#' @name fpkm
#' @rdname fpkm
#' 
#' @export
fpkm <- function(object, robust=TRUE) {
  fpm <- fpm(object, robust=robust)
  if ("avgTxLength" %in% assayNames(object)) {
    exprs <- 1e3 * fpm / assays(object)[["avgTxLength"]]
    if (robust) {
      sf <- estimateSizeFactorsForMatrix(exprs)
      exprs <- t(t(exprs)/sf)
      return(exprs)
    } else {
      return(exprs)
    }
  }
  if (is.null(mcols(object)$basepairs)) {
    if (is(rowRanges(object), "GRangesList")) {
      ubp <- DataFrame(basepairs = sum(width(reduce(rowRanges(object)))))
    } else if (is(rowRanges(object), "GRanges")) {
      ubp <- DataFrame(basepairs = width(rowRanges(object)))
    }
    if (all(ubp$basepairs == 0)) {
      stop("rowRanges(object) has all ranges of zero width.
the user should instead supply a column, mcols(object)$basepairs,
which will be used to produce FPKM values")
    }
    if (is.null(mcols(mcols(object)))) {
      mcols(object) <- ubp
    } else {
      mcols(ubp) <- DataFrame(type="intermediate",
                              description="count of basepairs in the union of all ranges")
      mcols(object) <- cbind(mcols(object), ubp)
    }
  }
  1e3 * sweep(fpm, 1, mcols(object)$basepairs, "/")
}

#' FPM: fragments per million mapped fragments
#'
#' Calculates either a robust version (default)
#' or the traditional matrix of fragments/counts per million mapped
#' fragments (FPM/CPM).
#' Note: this function is written very simply and
#' can be easily altered to produce other behavior by examining the source code.
#' 
#' @param object a \code{DESeqDataSet}
#' @param robust whether to use size factors to normalize
#' rather than taking the column sums of the raw counts.
#' If TRUE, the size factors and the geometric mean of
#' column sums are multiplied to create a robust library size estimate.
#' Robust normalization is not used if average transcript lengths are present.
#' 
#' @return a matrix which is normalized per million of mapped fragments,
#' either using the robust median ratio method (robust=TRUE, default)
#' or using raw counts (robust=FALSE).
#'
#' @examples
#'
#' # generate a dataset with size factors: .5, 1, 1, 2
#' dds <- makeExampleDESeqDataSet(m = 4, n = 1000,
#'                                interceptMean=log2(1e3),
#'                                interceptSD=0,
#'                                sizeFactors=c(.5,1,1,2),
#'                                dispMeanRel=function(x) .01)
#'
#' # add a few rows with very high count
#' counts(dds)[4:10,] <- 2e5L
#'
#' # in this robust version, the counts are comparable across samples
#' round(head(fpm(dds), 3))
#'
#' # in this column sum version, the counts are still skewed:
#' # sample1 < sample2 & 3 < sample 4
#' round(head(fpm(dds, robust=FALSE), 3))
#'
#' # the column sums of the robust version
#' # are not equal to 1e6, but the
#' # column sums of the non-robust version
#' # are equal to 1e6 by definition
#' 
#' colSums(fpm(dds))/1e6
#' colSums(fpm(dds, robust=FALSE))/1e6
#'
#' @seealso \code{\link{fpkm}}
#'
#' @docType methods
#' @name fpm
#' @rdname fpm
#' 
#' @export
fpm <- function(object, robust=TRUE) {
  # we do something different if average tx lengths are present
  noAvgTxLen <- !("avgTxLength" %in% assayNames(object))
  if (robust & is.null(sizeFactors(object)) & noAvgTxLen) {
    object <- estimateSizeFactors(object)
  }
  k <- counts(object)
  library.sizes <- if (robust & noAvgTxLen) {
    sizeFactors(object) * exp(mean(log(colSums(k))))
  } else {
    colSums(k)
  }
  1e6 * sweep(k, 2, library.sizes, "/")  
}



#' Normalize for gene length
#'
#' Normalize for gene length using the output of transcript abundance estimators
#'
#' This function is deprecated and moved to a new general purpose package,
#' tximport, which will be added to Bioconductor.
#'
#' @param ... ...
#' 
#' @export
normalizeGeneLength <- function(...) {
  .Deprecated("tximport, a separate package on Bioconductor")
}

#' Normalized counts transformation
#'
#' A simple function for creating a \code{\link{DESeqTransform}}
#' object after applying: \code{f(count(dds,normalized=TRUE) + pc)}.
#' 
#' @param object a DESeqDataSet object
#' @param f a function to apply to normalized counts
#' @param pc a pseudocount to add to normalized counts
#' 
#' @seealso \code{\link{varianceStabilizingTransformation}}, \code{\link{rlog}}
#' 
#' @export
normTransform <- function(object, f=log2, pc=1) {
  if (is.null(colnames(object))) {
    colnames(object) <- seq_len(ncol(object))
  }
  if (is.null(sizeFactors(object)) & is.null(normalizationFactors(object))) {
    object <- estimateSizeFactors(object)
  }
  nt <- f(counts(object, normalized=TRUE) + pc)
  se <- SummarizedExperiment(
    assays = nt,
    colData = colData(object),
    rowRanges = rowRanges(object),
    metadata = metadata(object))
  DESeqTransform(se)
}

#' Integrate bulk DE results with Bioconductor single-cell RNA-seq datasets
#'
#' A function that assists with integration of bulk DE results tables
#' with pre-processed scRNA-seq datasets available on Bioconductor,
#' for downstream visualization tasks. The user is prompted to pick
#' a scRNA-seq dataset from a menu. The output of the function is
#' a list with the original results table, bulk gene counts,
#' and the SingleCellExperiment object selected by the user.
#'
#' This function assists the user in choosing a datset from a menu of options
#' that are selected based on the organism of the current dataset.
#' Currently only human and mouse bulk and single-cell RNA-seq datasets
#' are supported, and it is assumed that the bulk DE dataset has GENCODE
#' or Ensembl gene identifiers. Following the selection of the scRNA-seq
#' dataset, visualization can be performed with a package \code{vizWithSCE},
#' which can be installed with \code{install_github("KwameForbes/vizWithSCE")}.
#' 
#' @param res a results table, as produced via \code{\link{results}}
#' @param dds a DESeqDataSet with the bulk gene expression data
#' (should contain gene-level counts)
#' @param ... additional arguments passed to the dataset-accessing function
#'
#' @return list containing: res, dds, and a SingleCellExperiment as selected
#' by the user
#'
#' @examples
#'
#' \dontrun{
#'   # involves interactive menu selection...
#'   dds <- makeExampleDESeqDataSet()
#'   rownames(dds) <- paste0("ENSG",1:nrow(dds))
#'   dds <- DESeq(dds)
#'   res <- results(dds)
#'   dat <- integrateWithSingleCell(res, dds)
#' }
#' 
#' @author Kwame Forbes
#' 
#' @export
integrateWithSingleCell <- function(res, dds, ...) {

  # function written by Kwame Forbes, to assist with integration of
  # bulk DE results with Bioconductor single-cell RNA-seq datasets.
  # provides a menu of dataset options from pre-processed scRNA-seq
  # datasets. Downstream visualization is performed using the
  # vizWithSCE package:
  
  # https://github.com/KwameForbes/vizWithSCE

  stopifnot(is(res, "DESeqResults"))
  stopifnot(is(dds, "DESeqDataSet"))
  
  # figure out organism from 'dds' or 'res', either using tximeta metadata
  # or guesswork on the gene names in the results table
  tximetaOrg <- metadata(dds)$txomeInfo$organism
  if (!is.null(tximetaOrg)) {
    org <- if (tximetaOrg == "Homo sapiens") {
             "human"
           } else if (tximetaOrg == "Mus musculus") {
             "mouse"
           } else {
             stop("Only human and mouse are currently supported")
           }
  } else {
    test.gene <- rownames(res)[1]
    org <- if (substr(test.gene, 1, 4) == "ENSG") {
             "human"
           } else if (substr(test.gene, 1, 7) == "ENSMUSG") {
             "mouse"
           } else {
             stop("Only human and mouse are currently supported")
           }
  }
  
  message(paste("Your dataset appears to be", org, "\n"))

  # read in table of options from vizWithSCE CSV file
  csv.file <- system.file("extdata/singleCellTab.csv", package="DESeq2")
  tab <- read.csv(csv.file)
  
  message(paste("Choose a",org,"single-cell dataset to integrate with (0 to cancel):\n"))
  
  tab <- tab[tab$org == org,]
  tab2 <- tab[,c("pkg","func","data", "pub","nCells","desc")]
  tab2$data <- ifelse(is.na(tab2$data), "", tab2$data)
  rownames(tab2) <- seq_len(nrow(tab2))

  # print the table in two parts
  print(tab2[,1:3])
  print(tab2[,4:6])

  cat("\n")
  
  # repeat the message below the fold
  message(paste("Choose a",org,"single-cell dataset to integrate with (0 to cancel):"))
  
  menuOpts <- ifelse(is.na(tab$data), tab$func, paste(tab$func, tab$data, sep="-"))
  ans <- menu(menuOpts)

  if (ans == 0) stop("No scRNA-seq dataset selected")
  
  pkg <- tab$pkg[ans]
  if (!requireNamespace(package=pkg, quietly=TRUE)) {
    message(paste0("Package: '",pkg, "' is not installed"))
    ask <- askYesNo("Would you like to install the necessary data package?")
    if (ask) {
      if (!requireNamespace(package="BiocManager", quietly=TRUE)) {
        stop("'BiocManager' required to install packages, install from CRAN")
      }
      BiocManager::install(pkg)
    } else {
      stop("Package would need to be installed")
    }
    if (requireNamespace(package=pkg, quietly=TRUE)) {
      message("Data package was installed successfully")
    } else {
      stop("Data package still needs to be installed for integrateWithSingleCell to work")
    }
  }

  # load package
  require(pkg, character.

  # if the dataset is in the scRNAseq package...
  if (pkg == "scRNAseq") {
    # if only one dataset within the function...
    if (is.na(tab$data[ans])) {
      sce <- do.call(tab$func[ans], list(ensembl=TRUE, ...))
    } else {
      sce <- do.call(tab$func[ans], list(which=tab$data[ans], ensembl=TRUE, ...))
    }
  } else {
    # if only one dataset within the function...
    if (is.na(tab$data[ans])) {
      sce <- do.call(tab$func[ans], list(...))
    } else {
      sce <- do.call(tab$func[ans], list(dataset=tab$data[ans], ...))
    }
  }

  # return the original two objects and the SingleCellExperiment
  return(list(res=res, dds=dds, sce=sce))
  
}