1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/* actuar: Actuarial Functions and Heavy Tailed Distributions
*
* Functions to compute probability function, cumulative distribution
* and quantile functions, and to simulate random variates for the
* zero-modified Poisson distribution. See ../R/ZeroModifiedPoisson.R
* for details.
*
* Zero-modified distributions are discrete mixtures between a
* degenerate distribution at zero and the corresponding,
* non-modified, distribution. As a mixture, they have density
*
* Pr[Z = x] = [1 - (1 - p0m)/(1 - p0)] 1(x)
* + [(1 - p0m)/(1 - p0)] Pr[X = 0],
*
* where p0 = Pr[X = 0]. The density can also be expressed as
* Pr[Z = 0] = p0m and
*
* Pr[Z = x] = (1 - p0m) * Pr[X = x]/(1 - Pr[X = 0]),
*
* for x = 1, 2, ... The distribution function is, for all x,
*
* Pr[Z <= x] = 1 - (1 - p0m) * (1 - Pr[X <= x])/(1 - p0).
*
* AUTHOR: Vincent Goulet <vincent.goulet@act.ulaval.ca>
*/
#include <R.h>
#include <Rmath.h>
#include "locale.h"
#include "dpq.h"
/* The Poisson distribution has p0 = exp(-lambda).
*
* Limiting case: lambda == 0 has mass (1 - p0m) at x = 1.
*/
double dzmpois(double x, double lambda, double p0m, int give_log)
{
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m))
return x + lambda + p0m;
#endif
if (lambda < 0 || p0m < 0 || p0m > 1) return R_NaN;
if (x < 0 || !R_FINITE(x)) return ACT_D__0;
if (x == 0) return ACT_D_val(p0m);
/* NOTE: from now on x > 0 */
/* simple case for all x > 0 */
if (p0m == 1) return ACT_D__0; /* for all x > 0 */
/* limiting case as lambda approaches zero is mass (1-p0m) at one */
if (lambda == 0) return (x == 1) ? ACT_D_Clog(p0m) : ACT_D__0;
return ACT_D_exp(dpois(x, lambda, /*give_log*/1)
+ log1p(-p0m) - ACT_Log1_Exp(-lambda));
}
double pzmpois(double x, double lambda, double p0m, int lower_tail, int log_p)
{
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m))
return x + lambda + p0m;
#endif
if (lambda < 0 || p0m < 0 || p0m > 1) return R_NaN;
if (x < 0) return ACT_DT_0;
if (!R_FINITE(x)) return ACT_DT_1;
if (x < 1) return ACT_DT_val(p0m);
/* NOTE: from now on x >= 1 */
/* simple case for all x >= 1 */
if (p0m == 1) return ACT_DT_1;
/* limiting case as lambda approaches zero is mass (1-p0m) at one */
if (lambda == 0) return ACT_DT_1;
/* working in log scale improves accuracy */
return ACT_DT_CEval(log1p(-p0m)
+ ppois(x, lambda, /*l._t.*/0, /*log_p*/1)
- log1mexp(lambda));
}
double qzmpois(double x, double lambda, double p0m, int lower_tail, int log_p)
{
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(lambda) || ISNAN(p0m))
return x + lambda + p0m;
#endif
if (lambda < 0 || !R_FINITE(lambda) || p0m < 0 || p0m > 1) return R_NaN;
/* limiting case as lambda approaches zero is mass (1-p0m) at one */
if (lambda == 0)
{
/* simplified ACT_Q_P01_boundaries macro */
if (log_p)
{
if (x > 0)
return R_NaN;
return (x <= log(p0m)) ? 0.0 : 1.0;
}
else /* !log_p */
{
if (x < 0 || x > 1)
return R_NaN;
return (x <= p0m) ? 0.0 : 1.0;
}
}
ACT_Q_P01_boundaries(x, 0, R_PosInf);
x = ACT_DT_qIv(x);
/* working in log scale improves accuracy */
return qpois(-expm1(log1mexp(lambda) - log1p(-p0m) + log1p(-x)),
lambda, /*l._t.*/1, /*log_p*/0);
}
/* ALGORITHM FOR GENERATION OF RANDOM VARIATES
*
* 1. p0m >= p0: just simulate variates from the discrete mixture.
*
* 2. p0m < p0: fastest method depends on the difference p0 - p0m.
*
* 2.1 p0 - p0m < ACT_DIFFMAX_REJECTION: rejection method with an
* envelope that differs from the target distribution at zero
* only. In other words: rejection only at zero.
* 2.2 p0 - p0m >= ACT_DIFFMAX_REJECTION: inverse method on a
* restricted range --- same method as the corresponding zero
* truncated distribution.
*
* The threshold ACT_DIFFMAX_REJECTION is distribution specific.
*/
#define ACT_DIFFMAX_REJECTION 0.95
double rzmpois(double lambda, double p0m)
{
if (lambda < 0 || !R_FINITE(lambda) || p0m < 0 || p0m > 1) return R_NaN;
/* limiting case as lambda approaches zero is mass (1-p0m) at one */
if (lambda == 0) return (unif_rand() <= p0m) ? 0.0 : 1.0;
double x, p0 = exp(-lambda);
/* p0m >= p0: generate from mixture */
if (p0m >= p0)
return (unif_rand() * (1 - p0) < (1 - p0m)) ? rpois(lambda) : 0.0;
/* p0m < p0: choice of algorithm depends on difference p0 - p0m */
if (p0 - p0m < ACT_DIFFMAX_REJECTION)
{
/* rejection method */
for (;;)
{
x = rpois(lambda);
if (x != 0 || /* x == 0 and */ runif(0, p0 * (1 - p0m)) <= (1 - p0) * p0m)
return x;
}
}
else
{
/* inversion method */
return qpois(runif((p0 - p0m)/(1 - p0m), 1), lambda, 1, 0);
}
}
|