[go: up one dir, main page]

File: util.c

package info (click to toggle)
r-cran-actuar 3.3-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,960 kB
  • sloc: ansic: 7,899; makefile: 18; sh: 13
file content (370 lines) | stat: -rw-r--r-- 12,382 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*  actuar: Actuarial Functions and Heavy Tailed Distributions
 *
 *  Various utility functions for matrix algebra and sampling from
 *  discrete distributions.
 *
 *  The functions therein use LAPACK and BLAS routines. Nicely
 *  formatted man pages for these can be found at
 *
 *    <http://www.mathkeisan.com/UsersGuide/E/>
 *
 *  AUTHORS: Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe
 *  Dutang
 */

#define USE_FC_LEN_T
#include <R.h>
#include <Rmath.h>
#include <R_ext/Lapack.h>
#include <R_ext/BLAS.h>
#ifndef FCONE
# define FCONE
#endif
#include "locale.h"


/* For matrix exponential calculations. Pade constants
 *
 *   n_{pqj} = [(p + q - j)! p!]/[(p + q)! j! (p - j)!]
 *
 * and
 *
 *   d_{pqj} = [(p + q - j)! q!]/[(p + q)! j! (q - j)!]
 *
 * for p = q = 8 and j = 1, ..., 8.
 */
const static double padec88 [] =
{
    5.0000000000000000e-1,
    1.1666666666666667e-1,
    1.6666666666666667e-2,
    1.6025641025641026e-3,
    1.0683760683760684e-4,
    4.8562548562548563e-6,
    1.3875013875013875e-7,
    1.9270852604185938e-9,
};


/* Matrix exponential exp(x), where x is an (n x n) matrix. Result z
 * is an (n x n) matrix. Mostly lifted from the core of function
 * expm() of package Matrix, which is itself based on the function of
 * the same name in Octave.
 */
void actuar_expm(double *x, int n, double *z)
{
    if (n == 1)
        z[0] = exp(x[0]);               /* scalar exponential */
    else
    {
        /* Constants */
        int i, j;
        int nsqr = n * n, np1 = n + 1, is_uppertri = TRUE;
        int iloperm, ihiperm, iloscal, ihiscal, info, sqrpowscal;
        double infnorm, trshift,  zero = 0.0, m1pj = -1;

        /* Arrays */
        int *pivot    = (int *) R_alloc(n, sizeof(int)); /* pivot vector */
        int *invperm  = (int *) R_alloc(n, sizeof(int)); /* inverse permutation vector */
        double *perm  = (double *) R_alloc(n, sizeof(double)); /* permutation array */
        double *scale = (double *) R_alloc(n, sizeof(double)); /* scale array */
        double *work  = (double *) R_alloc(nsqr, sizeof(double)); /* workspace array */
        double *npp   = (double *) R_alloc(nsqr, sizeof(double)); /* num. power Pade */
        double *dpp   = (double *) R_alloc(nsqr, sizeof(double)); /* denom. power Pade */
        R_CheckStack();

        Memcpy(z, x, nsqr);

        /* Check if matrix x is upper triangular; stop checking as
         * soon as a non-zero value is found below the diagonal. */
        for (i = 0; i < n - 1 && is_uppertri; i++)
            for (j = i + 1; j < n; j++)
                if (!(is_uppertri = x[i * n + j] == 0.0))
                    break;

        /* Step 1 of preconditioning: shift diagonal by average
         * diagonal if positive. */
        trshift = 0.0;
        for (i = 0; i < n; i++)
            trshift += x[i * np1];
        trshift /= n;           /* average diagonal element */
        if (trshift > 0.0)
            for (i = 0; i < n; i++)
                z[i * np1] -= trshift;

        /* Step 2 of preconditioning: balancing with dgebal. */
        if (is_uppertri)
        {
            /* no need to permute if x is upper triangular */
            iloperm = 1;
            ihiperm = n;
        }
        else
        {
            F77_CALL(dgebal)("P", &n, z, &n, &iloperm, &ihiperm, perm, &info FCONE);
            if (info)
                error(_("LAPACK routine dgebal returned info code %d when permuting"), info);
        }
        F77_CALL(dgebal)("S", &n, z, &n, &iloscal, &ihiscal, scale, &info FCONE);
        if (info)
            error(_("LAPACK routine dgebal returned info code %d when scaling"), info);

        /* Step 3 of preconditioning: Scaling according to infinity
         * norm (a priori always needed). */
        infnorm = F77_CALL(dlange)("I", &n, &n, z, &n, work FCONE);
        sqrpowscal = (infnorm > 0) ? imax2((int) 1 + log(infnorm)/M_LN2, 0) : 0;
        if (sqrpowscal > 0)
        {
            double scalefactor = R_pow_di(2, sqrpowscal);
            for (i = 0; i < nsqr; i++)
                z[i] /= scalefactor;
        }

        /* Pade approximation (p = q = 8): compute x^8, x^7, x^6,
         * ..., x^1 */
        for (i = 0; i < nsqr; i++)
        {
            npp[i] = 0.0;
            dpp[i] = 0.0;
        }
        for (j = 7; j >= 0; j--)
        {
            /* npp = z * npp + padec88[j] * z */
            F77_CALL(dgemm) ("N", "N", &n, &n, &n, &one, z, &n, npp,
                             &n, &zero, work, &n FCONE FCONE);
            /* npp <- work + padec88[j] * z */
            for (i = 0; i < nsqr; i++)
                npp[i] = work[i] + padec88[j] * z[i];
            /* dpp = z * dpp + (-1)^j * padec88[j] * z */
            F77_CALL(dgemm) ("N", "N", &n, &n, &n, &one, z, &n, dpp,
                             &n, &zero, work, &n FCONE FCONE);
            for (i = 0; i < nsqr; i++)
                dpp[i] = work[i] + m1pj * padec88[j] * z[i];
            m1pj *= -1;         /* (-1)^j */
        }
        /* power 0 */
        for (i = 0; i < nsqr; i++)
            dpp[i] *= -1.0;
        for (j = 0; j < n; j++)
        {
            npp[j * np1] += 1.0;
            dpp[j * np1] += 1.0;
        }

        /* Pade approximation is (dpp)^-1 * npp. */
        F77_CALL(dgetrf) (&n, &n, dpp, &n, pivot, &info);
        if (info)
            error(_("LAPACK routine dgetrf returned info code %d"), info);
        F77_CALL(dgetrs) ("N", &n, &n, dpp, &n, pivot, npp, &n, &info FCONE);
        if (info)
            error(_("LAPACK routine dgetrs returned info code %d"), info);

        Memcpy(z, npp, nsqr);

        /* Now undo all of the preconditioning */
        /* Preconditioning 3: square the result for every power of 2 */
        while (sqrpowscal--)
        {
            F77_CALL(dgemm)("N", "N", &n, &n, &n, &one, z, &n,
                            z, &n, &zero, work, &n FCONE FCONE);
            Memcpy(z, work, nsqr);
        }
        /* Preconditioning 2: apply inverse scaling */
        for (j = 0; j < n; j++)
            for (i = 0; i < n; i++)
                z[i + j * n] *= scale[i]/scale[j];

        /* Inverse permuation if x is not upper triangular and 'perm'
         * is not the identity permutation */
        if ((iloperm != 1 || ihiperm != n) && !is_uppertri)
        {
            /* balancing permutation vector */
            for (i = 0; i < n; i++)
                invperm[i] = i; /* identity permutation */

            /* leading permutations applied in forward order */
            for (i = 0; i < (iloperm - 1); i++)
            {
                int permutedindex = (int) (perm[i]) - 1;
                int tmp = invperm[i];
                invperm[i] = invperm[permutedindex];
                invperm[permutedindex] = tmp;
            }

            /* trailing permutations applied in reverse order */
            for (i = n - 1; i >= ihiperm; i--)
            {
                int permutedindex = (int) (perm[i]) - 1;
                int tmp = invperm[i];
                invperm[i] = invperm[permutedindex];
                invperm[permutedindex] = tmp;
            }

            /* construct inverse balancing permutation vector */
            Memcpy(pivot, invperm, n);
            for (i = 0; i < n; i++)
                invperm[pivot[i]] = i;

            /* apply inverse permutation */
            Memcpy(work, z, nsqr);
            for (j = 0; j < n; j++)
                for (i = 0; i < n; i++)
                    z[i + j * n] = work[invperm[i] + invperm[j] * n];
        }
        /* Preconditioning 1: Trace normalization */
        if (trshift > 0)
        {
            double mult = exp(trshift);
            for (i = 0; i < nsqr; i++)
                z[i] *= mult;
        }
    }
}



/* Product x * exp(M) * y, where x is an (1 x n) vector, M is an (n x
 * n) matrix and y is an (n x 1) vector. Result z is a scalar.
 */
double actuar_expmprod(double *x, double *M, double *y, int n)
{
    char *transa = "N";
    int p = 1;
    double  zero = 0.0, *tmp, *expM;

    tmp = (double *) R_alloc(n, sizeof(double)); /* intermediate vector */
    expM = (double *) R_alloc(n * n, sizeof(double)); /* matrix exponential */

    /* Compute exp(M) */
    actuar_expm(M, n, expM);

    /* Product      tmp   := x     * exp(M)
     * (Dimensions: 1 x n    1 x n   n x n) */
    F77_CALL(dgemm)(transa, transa, &p, &n, &n, &one,
                    x, &p, expM, &n, &zero, tmp, &p FCONE FCONE);

    /* Product      z     := tmp   * y
     * (Dimensions: 1 x 1    1 x n   n x 1) */
    return F77_CALL(ddot)(&n, tmp, &p, y, &p);
}



/* Solution of a real system of linear equations AX = B, where A is an
 * (n x n) matrix and B is an (n x p) matrix. Essentially a simple
 * interface to the LAPACK routine DGESV based on modLa_dgesv() in
 * modules/lapack/laphack.c of R sources. Very little error checking
 * (e.g. no check that A is square) since it is currently used in a
 * very narrow and already controlled context.
 */
void actuar_solve(double *A, double *B, int n, int p, double *z)
{
    int info, *ipiv;
    double *Avals;

    if (n == 0)
        error(_("'A' is 0-diml"));
    if (p == 0)
        error(_("no right-hand side in 'B'"));

    ipiv = (int *) R_alloc(n, sizeof(int));

    /* Work on copies of A and B since they are overwritten by dgesv. */
    Avals = (double *) R_alloc(n * n, sizeof(double));
    Memcpy(Avals, A, (size_t) (n * n));
    Memcpy(z, B, (size_t) (n * p));

    F77_CALL(dgesv)(&n, &p, Avals, &n, ipiv, z, &n, &info);
    if (info < 0)
        error(_("argument %d of Lapack routine dgesv had invalid value"),
              -info);
    if (info > 0)
        error(_("Lapack routine dgesv: system is exactly singular"));
}



/* Power of a matrix x^k := x x ... x, where x in an (n x n) matrix
 * and k is an *integer* (including -1). This function is fairly naive
 * with little error checking since it is currently used in a very
 * narrow and already controlled context.
 */
void actuar_matpow(double *x, int n, int k, double *z)
{
    if (k == 0)
    {
        /* Return identity matrix */
        int i, j;
        for (i = 0; i < n; i++)
            for (j = 0; j < n; j++)
                z[i * n + j] = (i == j) ? 1.0 : 0.0;
    }
    else
    {
        char *transa = "N";
        double  zero = 0.0, *tmp, *xtmp;

        xtmp = (double *) R_alloc(n * n, sizeof(double));

        /* If k is negative, invert matrix first. */
        if (k < 0)
        {
            k = -k;

            /*  Create identity matrix for use in actuar_solve() */
            int i, j;
            double *y = (double *) R_alloc(n * n, sizeof(double));
            for (i = 0; i < n; i++)
                for (j = 0; j < n; j++)
                    y[i * n + j] = (i == j) ? 1.0 : 0.0;

            /* Inverse */
            actuar_solve(x, y, n, n, xtmp);
        }
        else
            Memcpy(xtmp, x, (size_t) (n * n));

        /* Take powers in multiples of 2 until there is only one
         * product left to make. That is, if k = 5, compute (x * x),
         * then ((x * x) * (x * x)) and finally ((x * x) * (x * x)) *
         * x. Idea taken from Octave in file .../src/xpow.cc. */
        Memcpy(z, xtmp, (size_t) (n * n));

        k--;
        tmp = (double *) R_alloc(n * n, sizeof(double));
        while (k > 0)
        {
            if (k & 1)          /* z = z * xtmp */
            {
                F77_CALL(dgemm)(transa, transa, &n, &n, &n, &one,
                                z, &n, xtmp, &n, &zero, tmp, &n FCONE FCONE);
                Memcpy(z, tmp, (size_t) (n * n));
            }

            k >>= 1;            /* efficient division by 2 */

            if (k > 0)          /* xtmp = xtmp * xtmp */
            {
                F77_CALL(dgemm)(transa, transa, &n, &n, &n, &one,
                                xtmp, &n, xtmp, &n, &zero, tmp, &n FCONE FCONE);
                Memcpy(xtmp, tmp, (size_t) (n * n));
            }
        }
    }
}

/* Simple function to sample one value from a discrete distribution on
 * 0, 1, ..., n - 1, n using probabilities p[0], ..., p[n - 1], 1 -
 * (p[0] + ... + p[n - 1]).
 */
int SampleSingleValue(int n, double *p)
{
    int i;
    double pcum = p[0], u = unif_rand();

    for (i = 0; u > pcum && i < n; i++)
        if (i < n - 1)
            pcum += p[i + 1];

    return i;
}