1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/* actuar: Actuarial Functions and Heavy Tailed Distributions
*
* Functions to compute density, cumulative distribution and quantile
* functions, raw and limited moments and to simulate random variates
* for the transformed beta distribution. See ../R/TransformedBeta.R for
* details.
*
* We work with the density expressed as
*
* shape2 * u^shape3 * (1 - u)^shape1 / (x * beta(shape1, shape3))
*
* with u = v/(1 + v) = 1/(1 + 1/v), v = (x/scale)^shape2.
*
* AUTHORS: Mathieu Pigeon and Vincent Goulet <vincent.goulet@act.ulaval.ca>
*/
#include <R.h>
#include <Rmath.h>
#include "locale.h"
#include "dpq.h"
#include "actuar.h"
double dtrbeta(double x, double shape1, double shape2, double shape3,
double scale, int give_log)
{
#ifdef IEEE_754
if (ISNAN(x) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale))
return x + shape1 + shape2 + shape3 + scale;
#endif
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
if (!R_FINITE(x) || x < 0.0)
return ACT_D__0;
/* handle x == 0 separately */
if (x == 0.0)
{
if (shape2 * shape3 < 1) return R_PosInf;
if (shape2 * shape3 > 1) return ACT_D__0;
/* else */
return give_log ?
log(shape2) - log(scale) - lbeta(shape3, shape1) :
shape2 / (scale * beta(shape3, shape1));
}
double logv, logu, log1mu;
logv = shape2 * (log(x) - log(scale));
logu = - log1pexp(-logv);
log1mu = - log1pexp(logv);
return ACT_D_exp(log(shape2) + shape3 * logu + shape1 * log1mu
- log(x) - lbeta(shape3, shape1));
}
double ptrbeta(double q, double shape1, double shape2, double shape3,
double scale, int lower_tail, int log_p)
{
#ifdef IEEE_754
if (ISNAN(q) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale))
return q + shape1 + shape2 + shape3 + scale;
#endif
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
if (q <= 0)
return ACT_DT_0;
double logvm, u;
logvm = shape2 * (log(scale) - log(q)); /* -log v */
u = exp(-log1pexp(logvm));
if (u > 0.5)
{
/* Compute (1 - x) accurately */
double u1m = exp(-log1pexp(-logvm));
return pbeta(u1m, shape1, shape3, 1 - lower_tail, log_p);
}
/* else u <= 0.5 */
return pbeta(u, shape3, shape1, lower_tail, log_p);
}
double qtrbeta(double p, double shape1, double shape2, double shape3,
double scale, int lower_tail, int log_p)
{
#ifdef IEEE_754
if (ISNAN(p) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale))
return p + shape1 + shape2 + shape3 + scale;
#endif
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
!R_FINITE(scale) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
ACT_Q_P01_boundaries(p, 0, R_PosInf);
p = ACT_D_qIv(p);
return scale * R_pow(1.0/qbeta(p, shape3, shape1, lower_tail, 0) - 1.0,
-1.0/shape2);
}
double rtrbeta(double shape1, double shape2, double shape3, double scale)
{
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
!R_FINITE(scale) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
return scale * R_pow(1.0/rbeta(shape3, shape1) - 1.0, -1.0/shape2);
}
double mtrbeta(double order, double shape1, double shape2, double shape3,
double scale, int give_log)
{
#ifdef IEEE_754
if (ISNAN(order) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) || ISNAN(scale))
return order + shape1 + shape2 + shape3 + scale;
#endif
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
!R_FINITE(scale) ||
!R_FINITE(order) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
if (order <= - shape3 * shape2 ||
order >= shape1 * shape2)
return R_PosInf;
double tmp = order / shape2;
return R_pow(scale, order) * beta(shape3 + tmp, shape1 - tmp)
/ beta(shape1, shape3);
}
double levtrbeta(double limit, double shape1, double shape2, double shape3,
double scale, double order, int give_log)
{
#ifdef IEEE_754
if (ISNAN(limit) || ISNAN(shape1) || ISNAN(shape2) || ISNAN(shape3) ||
ISNAN(scale) || ISNAN(order))
return limit + shape1 + shape2 + shape3 + scale + order;
#endif
if (!R_FINITE(shape1) ||
!R_FINITE(shape2) ||
!R_FINITE(shape3) ||
!R_FINITE(scale) ||
!R_FINITE(order) ||
shape1 <= 0.0 ||
shape2 <= 0.0 ||
shape3 <= 0.0 ||
scale <= 0.0)
return R_NaN;
if (order <= - shape3 * shape2)
return R_PosInf;
if (limit <= 0.0)
return 0.0;
double logv, u, u1m, Ix;
double tmp = order / shape2;
logv = shape2 * (log(limit) - log(scale));
u = exp(-log1pexp(-logv));
u1m = exp(-log1pexp(logv));
Ix = (u > 0.5) ?
pbeta(u1m, shape1, shape3, /*l._t.*/1, /*give_log*/0) :
pbeta(u, shape3, shape1, /*l._t.*/0, /*give_log*/0);
return R_pow(scale, order)
* betaint_raw(u, shape3 + tmp, shape1 - tmp, u1m)
/ (gammafn(shape1) * gammafn(shape3))
+ ACT_DLIM__0(limit, order) * Ix;
}
|