[go: up one dir, main page]

File: emm.Rd

package info (click to toggle)
r-cran-actuar 3.3-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,960 kB
  • sloc: ansic: 7,899; makefile: 18; sh: 13
file content (67 lines) | stat: -rw-r--r-- 1,930 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\name{emm}
\alias{emm}
\alias{emm.default}
\alias{emm.grouped.data}
\title{Empirical Moments}
\description{
  Raw empirical moments for individual and grouped data.
}
\usage{
emm(x, order = 1, \dots)

\method{emm}{default}(x, order = 1, \dots)

\method{emm}{grouped.data}(x, order = 1, \dots)
}
\arguments{
  \item{x}{a vector or matrix of individual data, or an object of class
    \code{"grouped data"}.}
  \item{order}{order of the moment. Must be positive.}
  \item{\dots}{further arguments passed to or from other methods.}
}
\details{
  Arguments \code{\dots} are passed to \code{\link{colMeans}};
  \code{na.rm = TRUE} may be useful for individual data with missing
  values. 

  For individual data, the \eqn{k}th empirical moment is
  \eqn{\sum_{j = 1}^n x_j^k}{sum(j; x[j]^k)}.

  For grouped data with group boundaries \eqn{c_0, c_1, \dots,
    c_r}{c[0], c[1], \dots, c[r]} and group frequencies \eqn{n_1, \dots,
    n_r}{n[1], \dots, n[r]}, the \eqn{k}th empirical moment is
  \deqn{\frac{1}{n} \sum_{j = 1}^r \frac{n_j (c_j^{k + 1} - c_{j - 1}^{k + 1})}{%
      (k + 1) (c_j - c_{j - 1})},}{%
    (1/n) * sum(j; (n[j] * {c[j]^(k+1) - c[j-1]^(k+1)})/%
    ((k+1) * {c[j] - c[j-1]})),}
  where \eqn{n = \sum_{j = 1}^r n_j}{n = sum(j; n[j])}.
}
\value{
  A named vector or matrix of moments.
}
\seealso{
  \code{\link{mean}} and \code{\link{mean.grouped.data}} for simpler
  access to the first moment.
}
\references{
  Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998),
  \emph{Loss Models, From Data to Decisions}, Wiley.
}
\author{
  Vincent Goulet \email{vincent.goulet@act.ulaval.ca} and
  Mathieu Pigeon
}
\examples{
## Individual data
data(dental)
emm(dental, order = 1:3)

## Grouped data
data(gdental)
emm(gdental)
x <- grouped.data(cj = gdental[, 1],
                  nj1 = sample(1:100, nrow(gdental)),
                  nj2 = sample(1:100, nrow(gdental)))
emm(x) # same as mean(x)
}
\keyword{univar}